PASCAL AND THE DBASE III PLUS LANGUAGE IN
INVENTORY MANAGEMENT SYSTEM(U> NAVAL
CHOOL MONTEREY CA T CHANG JUNF’E 1275

"y ". 0 "l"‘t‘.‘t ";\"'

| *.\

'»,\

t‘.‘n"'l

2'\

I.c.!

'.‘. 0' ‘:::.s.’p

' B .' .‘.‘\. 'u

R

\

\

ﬁﬁ %&

L(h. ‘
10

FEE
EEEE,

FEEERE

3
s
s

i

MICROCNPY RFSNUTION TEST CHART

. AW

LAY

o
l:"l' oy 's[

't.l

., ’\‘\.\
AR R

!:.-\. S

",.*.‘-

n._m: o

n‘n\

l“l\ ' ._"A‘,‘)

Loy
NAVAL POSTGRADUATE SGHOOL

Monterey, Galifornia

3
1
)
!’l
§
U
)
'|

| THESIS

A,
<
" COMPARISON OF PASCAL AND THE
& DBASE III PLUS LANGUAGE IN PROGRAMMING
' AN INVENTORY MANAGEMENT SYSTEM
by

To Chang
)
) June 1987
¥
.i
]
K Thesis Advisor: C. Thomas Wu
o Approved for public release; distribution is unlimited.
by ° - S 4 ﬁ‘
A I

-
! . 8y 9 1 249
1 -
TNY o T 4 ¥ w ¥ ™ o W AR R g o W W W ¥ € Cy W Wy - Mo oy C O AT G GG K AL A A S G I A
.o"':.'.l". X N .0.'.). .") . S aN - % "". R .D.! AT 0 o ’.bh ' “ Ut WS -‘(A) \ ‘. N o ‘. \ \ R \ \' \‘\ WV .' ! '- ™ "f

unclassified

URITY CLASSFICATION % Pa //ﬂ/}/f’/axi’/
REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION 10 RESTRICTIVE MARKINGS

unclassified _ N
22 SECURITY CLASSIFICATION AUTHORITY 3 OISTRIBUTION AVAILABILITY OF REPORT '
Approved for public release; R
» [20 DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited. ‘

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL | 74 NAME OF MONITORING ORGANIZATION
(It applicabdle)
Naval Postgraduate School 52 Naval Postgraduate School

6¢ ADORESS (City, State. and 2P Code) b ADORESS (City, State, and /P Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

b 1T LB

82 NAME OF FUNODING /1 SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
JQRGANIZATION (IF applicable)

8¢ AODRESS (City, State. and 2iP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

W S R A AL

"

FTLE Unclude Secunty Clawticaton) b n pTSON OF PASCAL AND THE DBASE III PLUS LANGUAGE
IN PROGRAMMING AN INVENTORY MANAGEMENT SYSTEM

10 PERSONAL AUTHOR(S)

Chan To
. Tvdi OF, REPQRT] 130 T'ME COVERED 14 OF REPORT (rear. Month Day) |'S PAGE COUNT
Maste?" S Phesis l £a0M 10 1%8%% fine 203

B

- oy 4

‘6 SUPPLENENTARY NOTATION

ST LT

' COSATN CODES 18 SUBJECT TERMS (Continue on reverse f necesssry and dentify by biock number)
560 GROUP | SUB-GROUP database management systems (DBMS); inventory
management program; dBase III PLUS

"9 ABSTRACT (Continue on reverie if necessary and identify by block numder)

Before the widespread use of Database Management Systems (DBMS), pro-
grammers have had to rely on the third generation language such as
COBOL, Pascal, and PL/I to implement their application programs. These N
programs are usually very hard to maintain and modify unless verv ot
disciplined structured programming techniques are used. However, with
the DBMS, the ease of development, maintenance, and modification o< .
data-managing application programs can be attained. In this thesis, X
we compare two versions of an inventory management program, one written
in Pascal and the other written in dBASE III PLUS, in terms of their ~
modifiability and maintainability. N

{0 0 S RIUTION/ AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
@A oncassieounumTen [same as apT [(Jonic UsERs unclassified

322 NAME OF RESPONSIBLE 'NDIVIDUAL 220 TELEPHONE (Include Area Code) [22¢ OFFICE SYMBOL
Prof. C. Thomas Wu (408) 646-3391 Code 52Wg

OO0 FORM 1473, 8a mar 8) APR edition may be used untii exhausted

o LSS

SECYRITY CLASSIFICATION OF Twi§ PAGE

All other editions are obsolete unclassified

Approved for public release; distribution is unlimited. =

.-

-

Comparison of Pascal and the dBASE III PLUS language
in Programming an Inventory Management System

by

Chang, To
! Major, Republic of China Marine Corps
¢ B.S., Chinese Naval Academy, 1979

Submitted in partial fulfiliment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

)

' from the

X NAVAL POSTGRADUATE SCHOOL
June 1987

»

s Author: > 73 //'./424/’/

P /]

é,- Approved by:

o -,

Department 61‘ omputer Science ;

Kneale T. Marshall,—
Dean of Information and Policy Sciences

- -

. -

“\'0 DA L DN ,l'cfa'hi.n A A) it i .‘\' M

ABSTRACT

Before the widespread use of Database Management Systems
(DBMS), programmers have had to rely on the third generation
language such as COBOL, Pascal, and PL/I to implement their
application programs. These programs are usually very hard to
maintain and modify unless very disciplined structured
programming techniques are used. However, with the DBMS, the
ease of development, maintenance, and modification of
data-managing application programs can be attained. In this
thesis, we compare two versions of an inventory management

program, one written in Apple Pascal "”Q’and the other written in

dBASE 1III PLUS™ in terms of their modifiabllity and

maintainability.

drcnantinn Worp

' SEEDRTES S g

07

1 - ’ QuUAL!
A /!. i ‘NSPEC::YD

.---
e T e

> -

A T —— e a—_

Y

K

I INTRODUCTION.ciiiiiiiiii it iiaiiiiieseieannnnass

II. THE PROGRAMMING PRINCIPLE OF PASCAL.................
A. INTRODUCTION.iieteiiriiininentaenenenensninsonnsns

B. NAME AND CONTROL STRUCTURES......................

C. DATA STRUCTURES..........coiiiiiiiiirninncnnraenoninns

1. RealandInteger...........ccoiiiiiiiiniinneinnen..

Boolean Variables, Expressions and Operators....

Characters Variables...........cooviieiiennininennns

III. THE PROGRAMMING PRINCIPLE OF dBASE III PLUS........
A. AN OVERVIEW OF dBASE III PLUS...................
B. THE ABASE IIl PLUS SYSTEM................ccoviat
C. DATA TYPES OF dBASE IIl PLUS......................

N & KW N =
)
g
g
s
3

. MemoData Type.........coiiiiiiiiii i,
D. DATA STRUCTURES OF dBASE UI PLUS...............
1. The Data File Structure............................

DO IO I L L LN N N,

2, Indexing..........ccoiiiiiiiiiiii i 32
E. PROGRAMMING IN dBASE III PLUS................... 33
1. Parameter Passing...............coovvvviiiiiinn., 33

2. Control Transfers From One program To Another
.. 35

F. 'HOW DOES dBASE III PLUS IMPLEMENT
THE RELATIONAL MODEL..............ccovvivnnnn. 35
G. I/0 PROCESSING OF dBASE III PLUS.................. 36
1, Output.. ... e et e 37
/2R § ¢ + 15 U 39
Ho SUMMARY. ...ttt 41
IV. STUDY AND ANALYSIS OF ORIGINAL PROGRAM............ 43
A. BACKGROUND........ooiiiiiiiiiiiiniiiiiieieninnennns 43
B. ENTITY-RELATIONAL DIAGRAM...................... 43
C. PROGRAM STRUCTURES................... i 45
L. Sale. .. ittt 45
2. Purchase..............ccoiiiiiiiiiiiiiiiiiniiiinenas 52
V. ANALYSIS AND DESIGN OF NEW PROGRAM............ 58
A. NORMALIZATION OF SALES..........coovviiiinininn, 59
1. st Normal Form............cocviiiiiiiinninenennns. 60
2. 2nd Normal Form............coeienvivieninininenen. 61
3. 3rdNormal Form...................oooiiiiiiiiinns. 62
4. New E-RDlagram....................cccviiviii.. 63
S. New Data Structures.................covvininainns 63
B. NORMALIZATION OF PURCHASE................cvvvees. 66
1. 1st NormalForm...................oiiiiiiionn. 67
2. 2nd Normal Form.................coiiiiiiiiiinn. 68
3. 3rd Normal Form.................ccoevvviiiinn.n. 68
S

n
. v . . - - - -y S N S R PP L 2

PO v 000 RN N M 0 Y N R Ry S TR N T 00 0 e Dt

t\'?'l"“\"‘o'~\|“\.'."',‘u‘ n’.‘\"‘z\ M‘....C"‘.\-“‘\\.‘ﬂ. PO |.|. -".0.\ ..! A ! a¥ ‘) l. N ‘) A & " .. LD -o v ', .

8. New Data Structures...............coovviviiieinnn.. 69

VI. STUDY OF MAINTANIABILITY OF THESE TWO PROGRAMS. .72

A. THE ORIGINAL PROGRAM.........cocvvvviniiiniiiinines 73

1. Maintainability of Record Structures............. 73

B. THE NEW PROGRAM.cooitiiiiiiiiiiiiiiiin e 78

1. Maintainability of Record Structures............. 79

VII. STUDY OF MODIFIABILITY OF THESE TWO PROGRAMS...... 83
A. MODIFIABILITY OF PASCAL...........ccvvviiiviiinnnn, 83

1. Modifying Data Fields in Pascal Program.......... 83

2. Maoditying Functions in Pascal Program........... 85

B. MODIFIABILITY OF dBASE Il PLUS..................... 86

1. Modifying Data Fields in dBase [II PLUS Program.86
2. Modifying Functions in dBase III PLUS program. .88

VIIL CONCLUSION.evnreneseneresssneeeneeneeeeenneenaenenen, 91

APPENDIX A: THE ORIGINAL PROGRAM.ecuvevnnerneinnnnn, 93

APPENDIX B: THE NEW PROGRAM.cevneeeneenneenneennainns 158

LIST OF REFERENCES.e\\uevrneeeneseneeenseneeenneeeeenennns 199

INITIAL DISTRIBUTION LIST.. ... euneeneineeeeeeeer e, 201
6

) R) L » L .,.
"«‘f'-'?“ |‘f‘|‘,'-‘;‘l’:'l‘!‘\ ad, l':‘l'..!'.'!‘. :‘l‘- S AL -A AN ;I‘ WENS,,

........ o m A NNt Ay YA tata
AL A AT A AVA NN N ol
.'{~ le LY .t . i

LIST OF FIGURES

2.1 Integer and Real Format.......................cceee 15
2.2 A Sample of Multiple-linked List..................... 24
2.3 ASample Tree............c.oviiiiiiiiiiiiiiiiiiieen, 24
3.1 A Conceptual View of dBase IIl PLUS Data File..... 32
.4 4.1 E-R Diagram of Original Program.................... 44
4.2 Structured Diagram of SALES........................ 45
¢ 4.3 Structured Diagram of FSSNEW...................... 47
4.4 Structured Diagram of FSSSHIPMENT................ 48
‘; 4.5 Structured Diagram of FSSINQUERY................. 50
: 4.6 Structured Diagram of PURCHASE.................... 52
: 4.7 Structured Diagram of FSPNEW...................... 53
y 4.8 Structured Diagram of FSPSHIPMENT................ 55
; 4.9 Structured Diagram of FSPINQUERY................. 57
: 5.4 New E-R Diagram of SALES............cevvvvvrennnn. 65
: 5.2 New E-R Diagram of PURCHASE...................... 70
..
y
;
g
7
o A ey T T Y0 D N T VA

- - -

- - o -

. - EE NS LR RS OF LNl e !-\- N - -~\-| q\-.: LT '.-'4,‘."‘4-v',_ C . . ™
RO NI Ln"tc’h DA .l.l.l Aot X) ... , !’ Ao o PN onlals ab it 0L b Talad

LIEY PR LU 1 LTS LA UL P U) 4 a8 At gt § gt ‘gt RV LU LU 9 g gt gy, gt

I. INTRODUCTION

In the early 1960's, when database processing was considered
an esoteric subject, data was organized in a sequential manner.
Where physical structure and logical structure are identical, and
data were sent into computer as batch processing without
real-time access. In this case, multiple copies of the same files are
kept. At that time, the software handled the 1/0 operations. If the
physical structure changed, application programs need to be
rewritten, recompiled and retested. Data was designed and
optimized for a single application, there was a high level of
program/data dependence.

Late in the 1960's, both serial and random access to records
was possible. The logical and physical layout of such files are
distinct, but the relationship between them is simple. Now, data
storage units can be changed without changing the application
program. Data structure is usually designed as sequential, indexed
sequential, or simple direct access. Multiple key retrieval is
generally not used. Data security measures can be used but are
likely to be very elementary. Still, much data redundancy exists.
In this stage, software provides data access methods but not data
management.

In the early 1970's, muitiple logical files can be derived from
the same data, and those data can be accessed in different ways
by applications with different requirements. Data elements are
shared between diverse applications. The absence of redundancy
facilitates data integrity. Application storage organization is

e 1]
Al

FNENI N
A

N

o,
- .

N Lo oAte ¢t g at, At gl gl - gt * Saf Pal VoB eV pb U R VR op Vo Saf Rl R.p t P Vop cop R o0 V.8 i b ¥4

independant of the application program. It can be changed to
o improve database performance without affecting application
programs. Multiple key retrieval can be used where complex of
.« programs. The program in this study written in the Appie Pascai
" data organization are used without complicating application
language (see Appendix A) falls into this category.

.
- %

Now, at the current stage of database processing, software
provides logical as well as physical data independence. Data can
evolve without incurring high maintenance costs. Utilities are

-
o v

provided so that a database administrator can act as controller and
W custodian of the data to insure that its organization is least for the
W users as a2 whole. Effective procedures are provided for controlling
privacy, security and integrity of the data. With these, the
A database can easily provide answers to unanticipated requests.
More than that, a data description language is provided for the

O database administrator. Also, a command language exists for the
3 application programs, and a query language exists for the casual
; user. The dBASE IIl PLUS language (see Appendix B) falls into this
» category.

' An amazing amount of progress has been made in the computer
: fleld since the primitive computer age of the 1950s. Personail
: computers, high-level languages, artificial intelligence, and many
: other technological advancements have been made in a period of
‘ only 35 vyears, and new appliactions are being discovered every
N davy.

, The idea of recording and maintaining information In an
’ organized manner appeared many years ago, when the value of
N organized information was realized. The importance of this idea is
E stressed In the 3pinoza expression @ ‘The order and conneciion :f
i ideas is the same as the order and connection of things". However,
:

3 :

:: """ S R N A N A T O O ‘a-;'.'“‘.-.r?:;.-.r".;“.-' .»-".-*.-;'.-‘.-‘o"w‘." AN Oy

the appearance of computers started enforcing this idea with the
implementation of applications on the computer.

The use of automation and parallelism theories has also helped
the designers to make retrieval of very large databases very easy,
and in extremely timely manner.

The tremendous progress in the database design has resulted in
lower cost, and has provided a strong motivation for working in
the database develpoment field, especially on every large database.

An additionally strong motivation for working in the database
field is the wide variety of database applications. These applications
include manufacturing with inventory management, the servicing
of industries with lists of service capabilities; economic models with
production data for allocation and planning, and medical services
with patient records, disease histories, problem classification, and
treatment effectiveness data. Thus, database are appearing and
supporting almost every science. It might be said that it is the
database era in computer application.

An important consideration in the design of the database is the
way of storing data, which is used for a broad variety of
application and can be used to make changes to the data quickly
and easlly. The apility of the database to be applicable in so broad
an aspect of applications is based on a common feature that makes
database development valuable and general in a programming
methodology. This feature is a creative form which is called
"structural growth". This "structural growth" should start 'with a
solution on a simplified version of the problem and then repeatedly
expand its capabilities up to desired level.

Database systems are now available on machines that range all
the way from quite small microcomputers to *he .argest
mainframes. The facilities provided by any given system are to

10

..........
.....

........

some extent determined by the size and power of the underlying
machine.

Following will be the detailed discussion of both the old program
written in Apple Pascal which ran on Apple Il PLUS, and the new
program written in dBASE III PLUS which is going to run on IBM
PC, followed by a study of the maintainability and modifiability of
these two programs.

-
14"

.

II. THE PROGRAMMING PRINCIPLE OF PASCAL

A. INTRODUCTION

The development of Pascal began In 1968 and resulted in a
compiler written entirely in Pascal in 1970 by Professor Nicklaus
Wirth of Zurich, Switzerland. The language was slightly revised in
1972 and is undergoing standardization efforts. It has become very
popular as a language for teaching programming and is widely used
on microcomputers. Its popularity is due to the fact that its
syntax is relatively easy to learn. Also, Pascal facilitates writing
structured programs - programs that are relatively easy to
read, understand, and maintain. It is an Algol-like language, but
unlike Algol's key words, Pascal’'s reserved words are not typed
differently from identifiers.

In Algol, there are three primitive data types, and Booleans.
These, in turn, were very similar to the primitive data types
provided by FORTRAN. This reflects the fact that both of these
languages are predominantly scientific programming languages.
Numbers and logical wvalues are the most useful objects for
scientific programming. Pascal extends its applicability %o
commercial and systems programming by providing one additional
primitive data type, CHARACTERS. Pascal is a third generation
language, and a reaction to the second generation languages. Its
emphasis is on simplicity and efficiency. There are two similar
standards for Pascal. They are ANSI/IEEE (American National
Standards Institute/Institute for Electrical and Electronics
Engineers) Standard, and ISO Inter- national Standard.

Although Pascal was intended as a teaching language, many
other programmers have found that it is also suitable for “real”

12

p Vo0 o B S 0. o8 Yolb Dol 8o

- - - - .

P 8 TN

-\.-‘ 408, R

programmming. Its strong typing simplifies debugging and helps
catch latent errors in production programs; its rich set of efficient,
high level data types simplifies many non-numeric programs, and
its small size means that a programmer can acquire mastery of
the language in a moderate amount of time.

These qualities have made Pascal an attractive vehicle for
programming research. Pascal has been extended for concurrent
programming, to support verification, and for operating system
writing, or even a database writing (the original program in this
thesis is a good example of it). Pascal has become a basis for
almost all new language designs; most new languages are
“Pascal-like. " This includes the language Ada.

B. NAME AND CONTROL STRUCTURES
Pascal includes important additions to Algol's name, data, and
control structuring mechanisms. Variable declarations are
introduced by the word var and have the syntax:
<names> : <type>
Procedure and function declarations are quite similar to Algol's,

except that the begin comes after the local declarations rather
than before them:

procedure <name> (<formals>);
< declarations >

begin
< statements >

end,

In addition to variable and procedure declarations, Pascal has
constant and type bindings. Variables can declared to be the type
of 2 range of integer. This new data type then can be usec' n
other data types. Type declarations are introduced by the word

13

1&'“" RPN :4 ""‘\,'c :a >
o N »

o .(x).: _.: .,'-'.:.f\ e :'-f"l'-'.r.'.(\!'l{' :'-f"{‘;‘{-'-'\-'.'-" ,” AN
(J 3 . . N R

‘." v e

AN

REARAY VL

g

SR AN PR LY

o

- . e W
RN AN


~~~~~~~~~~~~~~

type and have the syntax:
< name > = < type >
Pascal has added a character data type for nonnumeric
programming and a variety of data type constructors for arrays,
records, sets, pointers, and so forth. Programmers can use these,
in conjunction with type declarations, to design data types

specifically suited to their applications. In the programn HANAOKA,
a lot of these techniques are used.

Pascal's control structures incorporate many of the ideas of
structured programming. Of course the if-then-else and for-loop
(in a very simplified form) are provided. Pascal also provides
leading and trailing decision loops and a case-statement for
handling the breakdown of a problem into many cases. The goto is
provided in a simplified form.

C. DATA STRUCTURES

Pascal inherits the three primitive data types from Algol: reals,
integers, and Booleans. These are considered to be the standard
data types (or simple data types) of Pascal.

1. Real and Integer

The data types INTEGER and REAL are used to represent
numeric information. People use INTEGER variables as loop counters
and to represent data such as an exam score or those without
decimal point. The data type REAL can be used to represent all
numbers, as a matter of fact, INTEGER is a subset of REAL. On
many computers though operations involving integers are faster
and less storage space is needed to store integers. Also operations
with integers are aiways precise whereas there may Ye some l0ss
of accuracy when dealing with real numbers.

14

LI AU ATNIA” BT A 47 N



These differences result from the way real numbers and

integers are represented internally in memory. real-numbers tend "

to be computer dependent; some sample integer and real formats

are shown in Fig. 2-1. ;
intsger format real format g

Figure 2-1 Integer and Real Format

In Fig. 2-1, each integer is represented as a standard binary
number. Real format is analogous to scientific notation. The storage o
area occupied by a real number is divided into two sections: the
mantissa and the exponent. All the arithmetic operators
(+,-,%,/) seen so far can be used with either integer or real
operands. But the two operators, div and mod, that must be used
only with type INTEGER operands. With these operators, we can
write multiple-operator expressions that compute the desired )
results.

2. Boolean Variables, Expressions and Operators .
A BOOLEAN variable or constant can be set to either of the
BOOLEAN values, TRUE or FALSE. The statement

const .

GOOD = TRUE; ;

specifies that the BOOLEAN constant GOOD has the value TRUE. We ':.
can use the relational operators (=, <, >, etc.) with numeric g

data to form conditions or BOOLEAN expressions. There are three
BOOLEAN operators: and, or, not. These operators are used with
operands that are BOOLEAN expressions. BOOLEAN variables can be
used as program flags to signal whether or not a special event

15

------

‘|.L K .l|"'l.‘.', N, ‘Q‘ .‘l‘.l‘ l 1."! R l ~ A‘. .’n A4

P ?

&

»5

RSN

S S T I A A A e A



occurred in a program. The fact that such an event occurred is
important to the future execution of the program. A BOOLEAN
variable used as a program flag s initialized to one of its two
possible values (TRUE or FALSE) and reset to the other as soon as
the event being monitored occurs.

3. Characters Variables

Pascal provides a character data type that can be used for
the storage and manipulation of the individual characters that
comprise a person's name, address, etc. Character variables are
declared using the data type CHAR in a declaration. A character
value consists of a single printable character (letter, digit,
punctuation mark, etc.) enclosed in apostrophes. A character
value can be assigned to a character variable or associated with a
constant identifier.

Relational operators can be used with characters. For
example, the BOOLEAN expressions

SENTENCE = BLANK
SENTENCE <> PERIOD
are used to determine whether two character variables have the
same value or different values. Order comparisons can aiso be
performed on character variables using the relational operators <,
<=, >, >=,
4. Programmer-Defined Data Tvpes
One of the features of Pascal that accounts for its widespread

use is that it permits the declaration of new data types. In Pascal,
you can define enumerated types, subrange types and set
types.

Often programs must manipulate nonniumeric data; this is

16

GGG G Wo b "y S Y A T AT RN Y T VY, U T T 0 T A A N I W
AN -"‘»‘! L) -"‘.! n"‘u".l"‘\i.‘.'..'ﬂl‘ﬂ 9,00, u"n. ATAONT AN A K Cal A ¥ A .00 00 58 Rt RO QY -.-c. '!‘l-

N N
Ut

Y “~ “»
-l'\‘l



usually character data, but it can also be more abstract. For
example, a commercial data—-processing program may need to be
able to deal with days of the week. With enumerated types we
can construct types by enumerating, or listing, ail their possible
values. For example, we can declare the types for months, days
of the week, and sexes like this:

i type

P month = (Jan,Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,

Nov, Dec);

Y DayOfWeek = (Sun,Mon, Tue, Wen, Thu, Fri, Sat);
sex = (male, female);

TR E NI

It is then possible to declare variables of these types and use

them:
? var .
: today, tommorow : DayOfweek;
i ThisMonth : month;
K gender : sex;
begin

today := Tue;
) today = tommorow;
‘ ThisMonth := Apr,

. gender = female;

Pascal also preserves security by preventing the programmer

from performing meaningless operations on enumeration values.

. People use abstract data type: a set of data values and the

orimitive operations on those data vaiues. For an enumerated "pe,

X the set of data vaiues are specified in the enumeration. The

operations don't have to be specified because they are the same for
all enumerated types:

.=, sucec, pred

. .

=, <>, <, >, <=, >=

17

\ A ~ ) T T T U S Py
", .n\« ' n Wi \.\'. v O " (O % AR IH " 2 ’

w”



L "-

'.‘.‘

The ordering relations (<,>, etc.) are defined according to the

order specified in the declaration of the enumerated type. For
example, Mon < Wen and Dec > Jan. The succ and pred functions
give the succeding and preceding elements in the list.For exampie,
succ(Mon) = Tue and pred(Mar) = Feb. These operations are also
secure; for example, succ(Sat) and pred(Jan) are errors.

The benefits of enumerated types can be summaried as
followed:

. They are high level and application oriented.

. They allow programmers to say what they mean.

. They are efficient since they allow the compiler to
economize on storage, and the operations can be
performed quickly.

4. They are efficient since the compiler ensures that

programmer can't do meaningless operations.

NN -

We have seen that the enumerated type improves security
since the compiler can check if the programmer is doing something
meaningless, such as asking for the successor of the last element
in the enumeration. The Pascal subrange type constructor
extends this checking to integers and allows tighter checking on
other types. Suppose the variable DayOfMonth is used to hold
meaningful vaiues from 1-31. although this could be declared as an
integer variable, our program will be more secure if we use a
subrange type:

var DayOfMonth @ 1..31;
If we attempt to assign to this variable a value outside this range,
we will get an error.

Subrange declarations also allow the the compiler to
economize on storage utilization. Subrange types zan be based on
types other than integers.

type WeekDay = Mon. .Fri;

18

..........................

» » - - » - » - - - - .. o« - - . < - - .. - -ﬁ J
R G N g r G N Y 8, G g ot G R R A AT A it




R g o Wy el e

s v -
.n-a""

-
Pl

If we accidently assighed Sat or Sun to a variable of type
WeekDay, we would get an error. Also, Pascal permits the
programmer to define subranges of any discrete type, that is,
enumerated types, integers, énd characters. It does not permit
defining a subrange of the real numbers, which is a continuous
type.

5. Set Tvpes

Pascal provides the ability to manipulate small finite sets
using the standard operations of set theory. The set type is almost
an ideal data type. It is high level and application oriented yet
very efficient.

The description of a set type has the form

set of < simpie type >

where a <simple type> is an enumerated type (including char), a
subrange type, or a name of one of these. An existing set can
be modified using the set operators. Before a set can be
manipulated, its initial elements must be defined using a set
assignment statement. A set variable must always be initialized
before it can be used with any of the set operators. The set
operators union, intersection, and difference require two sets of the
same type as operands. The +,*, and - are treated as set operators
when their operands are sets. These operators can be used to
combine two sets to form a third set. If more than one set
operator is used in an expression, the normal precedence rules for
the operators +,*, and - will be followed. When in doubt, it is best
to use parentheses to specify the intended order of evaluation.

Sets may also be compared through the use of the relational
operators =, <=, @tC. Both operands of a set reiational operator
must have the same base type.

19




6. Array Tvpes

Pascal is descendant of Algol-60, and Algol-60 generalizes
FORTRAN arrays in two respects: It allows any number of
dimensions and it allows lower bounds other than one. Pascal has
generalized Algol's arrays in some respects and has restricted them
in others.

One of the generalizations is in the allowable index types.
They can be subscripted by many other types including characters,

- enumerated types, and subranges of these.
var A : array [1..100] of real,

Notice that the dimensions of the array have been specified
as a subrange of the integers. Actually, any finite discrete type
can be used as an index type.

Another way in which Pascal generalizes Algol arrays is in
the allowable element types. Now any type can be the base type of
an array type. That is, we can have érrays of integers, reals,
characters, enumerated types, subranges, records, pointers, and so
forth. In general, a Pascal array-type constructor has the form

array [ <index type> ] of <base type>
Where <index type> is any finite discrete type and <base type> is
any type at all. Thus, Pascal arrays can be considered finite
mapping from the index type to the base type.

Arrays can be defined as multidimensional arrays. Suppose
we need a 20X100 arrays of reals M, we can define

var M . array [1..20] of array [1..100] of real;
As mentioned above, the base type of an array can be any type,
including another array type.

20

> 3] : B AN AT P P VA WO Y A S R S R e D L S S S S R I
“\l"". \ll’n..’\ A l!‘\‘?.; A l“.‘g!. W ul“.".’ l“.l. W ‘?! ,l.l X X' X ( M aN) % s gttt N o' N v iy q



2 7. Record Types

o One of the most important data structure constructors
provided by Pascal is the record-type constructor. This is a

- data structure that allows arbitrary groups of data.

4 type person = record

N - name : string;

" age : 18..100;

:j; rank : string;

o . sex : (male,female)
‘ birthdate : date;

"‘! end;

o« Just like an array, a record has a number of components. Unlike

« an array, however, the components of a record can be of different
;" types. Also the components of records can themselves be complex
i'; data types. The components of arrays are selected by subscripting.
& A component of a record is selected by placing a period between
e the name of the record and the name of the component. Selectors
, y - for records and arrays can be combined as needed to access a
E‘ particular component. But why have both arrays and records since
” they are both methods of grouping data together. They differ in
}: two important respects. Arrays are homogeneous, that is, ail of
E:. the components of an array are the same type. Records are
. heterogeneous, that is, their components do not have to be the
‘ same type. In this sense records are more general than arrays.

::r Since arithmetic and logical operations must be performed
‘:E on individual memory cells, record variables cannot be used as the
‘ operands of arithmetic and relational operators. These opeartors
E' - must be used with individual fields of a record.

EE ) The other difference between arrays and recoids is in :heir
" manner of selecting components. We can select specific array
\

: 21

1)
_\‘.“‘V'.' QIﬁ{:{.&;ﬁ’:Q:q:—:-';'::"":-;;. -A.h_- -y -..- I N .._-_- AT AL -._.. ‘-I‘:('-“-‘\J‘.'." <.\~. - \‘,_ﬂ.._\




oy -

PO

s e

- e e -

- g o T e

- - - - -

........

elements with expressions like A{1], A[2] just as we can select
specific record components with expressions like R.mon, R.day. The
difference is that we can compute the selector to be used with
arrays; that is we can write A[E] where E is an expression whose
value will be known at run-time. This is an important feature
since it allows writing a loop that process all the elements of an
array. This can't be done with records.

8. Pointer Types

Pointer types are dynamic data structure of Pascal. Dynamic
data structures are data structures that “grow" as a program
executes. A dynamfc data structure is a collection of elements
(called nodes) that are normally records. Unlike an array that
always contains storage space for a fixed number of elements, a
dynamic data structure expands and contracts during program
execution based on the data storage requirements of the program.

Dynamic data structures are used for storage of real world
data that is constantly changing. An example would be an airline
passenger list.

Dynamic data structures are extremely flexible. It s
relatively easy to add new information by creating a new node and
inserting it between two existing nodes. It is also relatively easy to
modify dynamic data structures by removing or deleting an
existing node. This is more convenient than modifying an arrav of
records, where each record is in a fixed position relative tc *he
others as determined by its subscript. Here 1s an exampie using
this feature:

var D ° pointer;
X | integer;

begin
new(p),

22

-------------




T T3 a¥h a2 2 o 8 2'8 a’% 274 a' a¥A 2"t <S8 a?h 2%k a1 aW ath' Emtavat Vst tat vat €at At 82" Bat et fav e’ e

.....

end;

e

Y

This program allocates a memory location and puts its
address in P, stores 5 in the memory location whose address is in

- -
-

w P, and then add the contents of this location to x.

F.? Since we don't know beforehand the order or number of
f'., nodes in a dynamic data structure, we cannot allocate storage
from a dynamic data structure in the conventional way (using a
- variable declaration statement). Instead, we must allocate storage

for each individual node as needed and join this node to the rest of

the structure. The new statement is used to allocate storage for a
new node.

ool

<

Also we must have some way of referencing each new node
that is allocated in order to store data in it. Pascal provides a

. special type of variable, called a pointer variable (or pointer),
for this purpose.

SLASLAALL

u There are f_our kinds of dynamic data structures use pointers
in Pascal. They are : linked lists, stacks, queues, and trees. A
linked list or simply list is a sequence of nodes in which each
node is linked or connected to the node following it. Each node in
- the list has two fields : the first field contains data and the second
field is a pointer to the next list element.

A stack can be thought of as a linked list in which each new
node is inserted at the head of the list and each deletion removes
the current head of the list. Inserting a node is a push operation
and deleting a node is popping the stack.

A queue is a linked list used to model things such as a line of

customers waiting at a checkout counter or a stream of jobs

s 2 8

-
X

-t e
-

23

-

Ny reed s sad

A

» B L A AR L] S A S SR SO SR S AT RS A S
N a N AKX N N o A0l K N > h o e

EYIER TN I IO S L O NI e
OO N. W .‘ N

.-
.4

s
>
<
-

S




W, (o N
T AV A

waiting to be printed by a line printer. In a queue, all insertions
are done at one end (the rear of the queue) and all deletions are
made from the other end (the front of the queue).

So far we have involved list elements or nodes with a single
pointer field. It is possible to have lists of elements with more than
one link. We call it a multiply-linked list.

—

Figure 2-2 A Sample of Multiply-linked List

A special kind of multiply-linked list that has wide
applicability in computer science is a data structure called a
binary tree.(See Figure 2-3)

The details of binary tree and traverse or search of a binary

tree are subjects of Data Structure, to go further into them please
reference Data Structure text books.

ROOT
"

r [FOX | ~

Figure 2-3 A Sample Tree

D. SUMMARY

Pascal's primary goal was to be a good language for teaching

24

........

LR "ol Sal

s e v



O EE A

e m s s MR Rt T m Rt Tt tateta e AR SRR P
LA AR, T, LS R O R S N 4, U R G RS L L AR R Y R A

R RS A AN A UV U LA URT O U L So A% - dta A% sV 4'2 22 0*s 4'2 §" YT GO OO RO O ™ TP oy

programming. This led to subsidiary goals for reliability, simplicity,
and efficiency. Pascal has been very successful in these areas.

Pascal is a particular suitable language with which to learn
programming. Most modern programming concepts are available in
Pascal. In sharp contrast to BASIC, things become much more
complex as programs grow in size. Pascal programs, by contrast,
expand gracefully. The concepts we learn with Pascal are applicable
in almost any programming environment.

Much of the criticism Pascal has received results from trying to
use it for purposes for which it was not designed. For example,
Pascal has been criticized for its lack of a separate compilation
facility, even though such a facility is not especially important in
teaching programming (the language's intended application).
Indeed, it is to Pascal's credit that it has been so successfully
applied in so many areas for which it was not intended.

25

Wy W BN RO TN




I1I. THE PROGRAMMING PRINCIPLE OF JdBASE III PLUS

A. AN OVERVIEW OF dBASE i1l PLUS . :
A database is a central repository of related inforrnation. To 3

paraphrase this, a database i{s a physical grouping of a collection of -t
individual, but related, bits and pieces of information. The <
difficulty in building an effective database system is not in the N

mechanics of construction, but in the intelligent design and
planned use of the database.

As an example, if one wants to maintain information about
each and every individual employed in an organization, it is .
necessary 1o Create a base of data about all the employees. This .
base of data could contain, for example, information about each

h e ]

employer's employee-number, name, salary, year of hire, and
date of last promotion. This base will subsequently provide
immediate access to the type of information sought. Database can
and are being maintained for every subject from astronomy to C
zoology. Computers, because of their speed and accuracy, are the 3
information processor, the physical means, of creating and
subsequently accessing these databases.

dBASEIIl PLUS {s defined as a relational database manager, that
is, this software helps create and maintain a relational database. A
relational database is one in which the data is arranged in the
form of a matrix, with the rows of the matrix forming each
individual record in the database, and the columns of the matnx
forming the individual fields of information. Using such a database, .2
one can establish a relationship between two or more databases, by .
using a common xevy fleid of information.

26 :

~
.
-

»

NG
™. ".-\\: "‘h""~"'.~\- \‘hx‘ \--{". N
L) S R o il B



At i

AR

B. THE dBASE III PLUS SYSTEM

So where does dBASE III PLUS fit in with all of the previous
concepts and definitions?

dBASE III PLUS is the name of a software package marketed by
Ashton Tate,In«., of Culvery City, California; it is a very powerful
tool for the development of microcomputer business applications.
dBASEIlIl PLUS is a data manager. It is a piece of software that lets
the user have full freedom in the conceptuaiization and creation of
database for all types of business applications. Since business
depends on timely information dissemination, the wvalue of a
powerful, programmable utility for database generation,
maintenance, and query cannot be overstated. dBASE IIl PLUS is
defined as a relational database manager, that is, this software
helps create and maintain a relational database. dBASE IIl PLUS
can be executed on a variety of microcomputers, under any one of
the popular operating systems.

C. DATA TYPES OF dBASE 11l PLUS

Data s defined as something known or assumed; facts from
which a conclusion can be inferred. Data usually represents some
aspect of the physical world around us, such as a list of names and
addresses, the temperarure of the room, today's date and time, or
a bank statement.

A data type is a high level representation of data as seen by the
user which has a corresponding binary form understood by the
computer. Data types allow people to write programs using data
representatioris with which they are comfortable. The high level
representation 1is maintained internally as a binary format
processed by the computer.

Each language provides a limited number of elementary data

27




g - - w - -

oy M B A et

types. Complex data structures can be constructed from the
elementary types. dBASE I[II PLUS provides : Character,
Numeric, Logical, Date, and Memo. Using these data types,
complex data structures useful in representing a multitude of real
world situations can be constructed.

1. Character Data Tvpe

A field defined as a character field accepts any character
of data entered. Character data is used to represent letters of the
alphabet, numbers, and special characters. In dBASE [II PLUS, the
character type is made up of the set of all ASCIl characters. A
character string, often just called a string, is any sequence of
ASCII symbols. When a number is represented as a character type,
it must first be converted to numeric data before calculations can
be performed with it. It is often convenient to use the character
data type for numbers such as telephone numbers, addresses, and
inventory stock numbers which will not be used in calculations.
Some of the more common operations performed on strings are:

Concatenating strings (linking them together)
Splitting up strings into “substrings”

Testing strings for equality

Finding substrings (string patterns)

The character variable contains textlike information:"“David
Smith","1234 Fifth Street","Computer Science Department". Any
information between the quote signs will be taken as a character
string. The maximum length of a string is 254 characters. The
minimum length of a string is 0.

Because dBASE III PLUS is a business oriented language, it
deals much more In text manipulation than computer languages
such as BASIC and Pascal.

28

----------------- (LIS P DL L T T W AR R R T e 5% -.w‘-’- ‘-..'-_
U I"-'_.f~\$l‘ f\f\-"‘ _I.'I.\’\J' .'-",‘J " ..- o I vf {. . . ™ -f ( o g »



4!'.! LU TS I LW ALY LY PN WL P L LA U LW LW LA I VWA L V 7y TR ¥ DYDY . TR 120 1ok T Vo' Vad Vo ¢ 8 o8 So8 S0 B f v g 0.8 L4

% 2. Numeric Data Tvpe
A field defined as a numeric field will only accept the

" digits 0 through 9, the decimal point, and the negative sign(-) as
:\‘ data. (Trying to force character data into a numeric field will lock
vy up the keyboard.) Numeric data {s used to represent integers or
A decimal quantities that will undergo computations. dBASE III PIUS
A allows a wide range of numbers and has adequate precision for
1y most business and scientific applications. It maintains an internal

precision of fifteen or sixteen digits, depending on the size of the
number. This allows dBASE III PLUS to be accurate on calculations
' with fairly large numbers without round off error. I[nternally

dBASE Il PLUS represents numbers with the IEEE long real (64-bit)

f binary floating point representation. A binary floating point
: representation is the computer's equivalent to scientific notation.
3 Each number contains three parts: the sign, either + or -, the
o significand which represents the significant digits of the number,
: and the exponent which multiplies the significand by the
ij appropriate power to yield the correct binary point position in the
¢ final result.

¥

N

b 3. Logical Data Tvpe

= A logical data field is one which is of a predefined length, 1
\ character, and will accept as input 2ither the letters T or  (for
" TRUE/YEZ) >r the letters F or N ‘for FALSE/NO). The actual 1ata o
A 3t0rea exactly as entered, but will be displayed on the sCreen or
\'J printer as .T. or .F. only. If no data is entered, the default is .F.
: Logical data fields are used to represent types of data when
;: there are only two cholczs for anvy 2lement. such as maie/femaie,
; positive/negative, yes/no, dead/alive. dBASE IIl PLUS can perform
&

: 29

R

-

E‘;.,_ T R T TR T D R SR S AR e e e e ARG AL NN




WATER T\ R T W TR T T TR e

conditicnal tests which depend on the value of a logical field.

4. Date Data Tvpe

A date data fileld is also of a predefined length, eight
characters, and dBASE III PLUS presumes that you will be
subsequently entering a date of the format MM/DD/YY. At the time
of actual data entry into this field, dBASE Ill PLUS automatically
checks for the accuracy of the data entered. For example, an
entry of 12/35/85 would invoke a beep and an error message. The
built-in edit even checks for a leap-year! Date fields are very
useful in that they reduce the amount of programming effort
needed for routines computing time lapse, since you can add
numbers to or subtract numbers from, date fields, or you can add

or subtract two date fields directly.

5. Memo Data Tvpe

A memo data field i{s also of a predefined length, 10
characters in the file itself, and automatically contains the word
memo for data. Through the use of this field, you can maintain
memos for individual records. Each memo could be up to 4000
characters iong if the bpullt-in dBASE Il PLUS word processor s
used, or can be any length if it is set up with a commercial word
processor. dBASE Il PLUS makes use of an external file in which it

stores the contents of the individual memos, and hence the memo

zan have the capacities mentioned apove. This 2xternal :ile -vill
nave the same primary name as the dBASE (Il PLUS file, but wiil
have the .DBT extension for the secondary name. dBASE Il PLUS
maintains this file in an internally usable form.

D. DATA STRUCTURES OF dBASE lII PLUS

30




L s af = o

8 & + KNS B9 KR

dBASE IIl PLUS contains powerful high level commands which

allow people to create and manipulate sophisticated data structures
easily. There are several common models used to represent data
structures. dBASE III PLUS uses the relational model: the data 1is
represented in flat (two-dimensional) tables composed of rows and
columns.In relational databases, a two-dimensional table is known
as a 'relation”, and operations on these tables can be described
with mathematical precision. However, the relational model is
very powerful and all other common data models can be
represented using two-dimensional (relational) tables.

The CREATE command is used to create a data file structure
matching the body of data that it is intended to represent. This
structure can store data as individual records and the data can

then be easily accessed and manipulated.

1. The Data File Structure

The dBASE 111 PLUS data file can be seen as a
two-dimensional table containing the following properties:

a.All items in a column are of the same data type; that
is, the data file is column~homogenous. A column in
dBASE (Il PLUS 1s a fleld.

b.Each column (or field) must have a distinct fieldname. No
duplicate fieldnames are allowed.

c.fach row 15 a record and is assigned a numeper The
record numbper assigned 1S reiative 10 the record's position in the
data flle.

A conceptual view of a dBASE IIl PLUS data file is:

31

-----------



(maxmum of

B 1) 128 fieise)

RECORD 00001

RECORD 00002

v

v

v

(maximim of 1 hillion records)

Figure 3-1

The limitations on dBASE 111 PLUS data files are:
File limits (maximum sizes)

Number of records/file
Record size (bytes)

Number of fields/record

Field limits
Character fields
Logical fleids
Numerical fields
Date fields
Memo fields

1 billion

4000 bytes in .DBF file

128

254 bytes

1 byte

19 bytes

8 bytes

10 bytes in .DBF file

DBF file size iimit only by operating system. hardware

or word processor used.

2. Indexing

One of the most important features of any database system

is the ability to find a specific data itemn from among many item

32

-~

LY
.....
----------------



4
v

Y

.,

1
C)

PR E AV A NN :

foml, ata'ata 00 af e Voltad *at "ad “ad Vah %op 40 S8 V.0 ) WS ) EWUNUNT U *V R TVIV U PO PV

quickly. Search by index is the best way to shorten long sequential
search times to only a couple of seconds.

When the INDEX ON <key> command is issued in dBASE lll
PLUS, a seperate index file is creates based on the key expression

specified in the command line. The followings are examples of
creating indexed files:
. USE Customer (Select data file)

. INDEX ON Names TO Customer (Generate index)
This index allows rapid searches of the Customer database by

Name . Any record can be found in two seconds or less with the
FIND or SEEK command.

E. PROGRAMMING IN dBASE III PLUS
In dBASE [II PLUS, a program is actually a set of commands .n
sequence. To create a program, at dot-prompt, just type in:
.CREATE COMMAND pgm <CR>
This command informs dBASE IIl PLUS of your intention to create
a command file (program) called pgm.PRG. The screen is then
erased; the dBASE III PLUS word processor takes over, there is no
dot-prompt; and whatever you key in will remain on the screen,
until you etther SAVE it(Ctri-W), or DELETE it(Ctri-Q).
To invoke the execution of a program, simply request dBASE IlI
PLUS to:
DO PGM <CR>
T0 make changes TC an 2Xisuing program. use ‘he Iolicwing
command:
.MODIFY COMM pgm <CR>
L gaALamerner 2assing
The main value of parameter passing occurs when a low

33




B . v v L ate 0% 4'a 2'2 £'2 8'a 2’ d‘atadad'ad’

command file can be called from many different programs in
many situations and must be free of the naming convention used
in the calling program.

There are two Kkinds of variables,PUBLIC(global) and
PRIVATE(local). A PUBLIC variable can only be released by the
programmer while a PRIVATE variable is released by dBASE Il
PLUS when the program returns from the command file in which
the variable was created.
All variables created in a command file are PRIVATE unless
specifically declared PUBLIC. All variables created in higher level
command file are available to the lower level command files unless

there is a clash. If a variable is declared PRIVATE in a command
file and there exists another variable from a higher level with the
same name, then dBASE [II PLUS has to decide which variable is to
be referenced and which is to be hidden. Until the PRIVATE
variable is released, dBASE III PLUS hides the higher level variable
and all references of the variable name refer to the lower level

variable.
The variable status, PUBLIC or PRIVATE, can be directly
specified:
PUBLIC name,city
PRIVATE salary
Any variable can be released with the RELEASE command:
RELEASE name,city
dBASE [II PLUS automaticaily releases a PRIVATE variable when
the user leaves a command file with RETURN, CANCEL, or QUIT.
Usually variables are passed from one command file to another
without specific instructions. With parameter passing, the high
levei command file coes not have :0 follow the same naming
convention that the low level command file uses.




PUBLIC variables should be wused sparingly. Generally
variables should not be made PUBLIC without some specific reason.
While debugging, the most important variables should be PUBLIC so
that they can be inspected if the program crashes and control
returns to the dot prompt (thereby releasing all the private
variables).

2. Control Tranfers From One Program To Another

Just as you invoke the execution of a program by asking
dBASE III PLUS to DO <program name>, you can invoke the
execution of another program from within the first one in the
same way. The calling program, at some logical point in its
execution, transfers control to the called program. At the end of
the execution of the called program, control is automatically
transferred to the instruction after the DO instruction that
passedcontrol to the called program.

This concept of transferring control to subprograms and then |
receiving control back at the main program is very important to
the programmer, since it permits the breakdown  of a large
complicated system into subset of logically connected, more
manageable subprograms. This makes the system much more
comprehensible not only to other programmers but also to the
creator of the system.

. HOW DCES 4BASE !IlI PLUS IMPLEMENT THE RELATIONAL MODEL
In dBASE Il PLUS, there 1s a very powerful command:
SET RELATION TO
The SET RELATION creates a link between two data files. Its
power stems from the fact that dBASE III PLUS will automaticaliy
look up related information from another file. This means that

335

A A e e A g I e T T ¢ et e e



FORM commands, will perform a search of another database.

As an example, suppose sales information is kept in one file and
time of shipment information in a second file. SET RELATION will
allow the user to produce reports on the transactions in which
dBASE III PLUS looks up the sales information at each transaction.
For example, in S_INQUERY.PRG:

SELECT 1

USE b:s_contra INDEX b:s_conind

SELECT 2

USE b:tmofship INDEX b:tmshipdx
then in SALELIST.PRG:

SET RELATION TO snumber INTO tmofship
this will create relationship between s_contra and tmofship with
snumber as the common key.

SET RELATION is equivalent to a user who always performs a
SEEK command at each record but it is faster than writing the
individual commands and it enables many dBASE III PLUS
command to utilize the second file. This gives multi-file capabilities
to the nonprogrammer.

G. 1/0 PROCESSING OF dBASE III PLUS
The 1/0 processing of dBASE 1Il PLUS is more concerning about

the communication between the programmer and operator. This
communication can be broken down into two categories:

1. OQutput:The programmer talks to the operator.

2. Input:The operator talkks to the programmer.
As mentioned above, dBASE 1IlI PLUS was designed for
microcomputers. Most current 1/0 devices used on microcomputers
are CRTs(or screen). Therefore, dBASE 1Il PLUS contains very
powerful screen handling capabilities discussed below.

36

S W W w e

e -‘I—Aj'l.i‘< e 100

N P

VYT, NS



powerful screen handling capabilities discussed beiow.

1. Qutput
In dBASE III PLUS, output screen handling refers to the
process by which the programmer talks to the operator. The
output commands used to support screen handling can be
categorized according to the mode in which they work: ’

a. FORMATTED MODE
@ <coordinate> SAY
This command places its output at the screen location specified by
the programmer, thus formatting the screen. '
In addition, it has options which allow the programmer to
modify the display of its data, thus formatting its output.

b. UNFORMATTED MODE
General:
-
7?
Specialized:
DIR
DIRECTORY :
DISPLAY
LABEL
TYPE
These commands are dependent upon the current cursor
position and begin their output at that location. The most
frequently used commands in communicating with the operator in ’
dBASE (il 2LUS programming applications 1s the @ SAY command y

because of the degree of control it offers. The ? command is

37 -

) | . -y .. '. - - - - .. - - "' '.I ....... .‘...‘Q‘ =
B A P D R S A A A A A e N R N Sl A S AR R LA
od » s - » L o »l - - a - ' g i



when a screen scrolling effect is desired.

TEXT ... ENDTEXT is a structured output command,
rather than a structured programming command because it has no
effect at all on program flow. It is simply a convenient way of
outputting large amounts of unformatted text. The literal text
must be contained within the TEXT ... ENDTEXT structure, and
therefore is a constant in the command file.

c. FORMATTED SCREEN
The <coordinates> specified in the @ ... SAY command

control where the output will appear on the screen. The syntax
and range for computers with 24X80 screens is:

@ <coordinates> SAY <expression>

<coordinates> = <row>,<column>

<row> = numeric expression, range 0-23 (line)

<column> = numeric expression, range 0-79
Note that minus numbers cannot be used with this relative
addressing operator.

d. FORMATTED OUTPUT
In addition to formatting the screen, we can also format

the individual picture of each data itern when we display it. The
@...SAY command offers the programmers a variety of options for
displaying data in a format different than the format in which it
exists. For exampile, a numeric field cannot contain commas, put
it can be dispiayed with commas when output with @...SAY
command. The syntax an- formatting options are:

@ <coordinates> SAY <expression> <format option>

<format option> = PICTURE '<picture template>'

| FUNCTION ‘{<function>}'

38

................................

. LT T P (0 T N L T ) N R N T N R R ST AN e )
I N T T A o T T T R R R A VR S DRV A y T



AR AN AR R A T ALY A U U U U AR ORI opl ol kot 0 A0 0 0.8 4,0°0.8'0.0" YRRV RUNY RV YU LTS

| FUNCTION '{<function>}'
| USING '{<using symbol>}'

2. Input
Input screen handling refers to the process by which the
operator talks to the programmer. Output screen handling is the
reverse of this. Operator input must be carefully handled. This is
the time to trap all the possible errors so that the data in the
database is always known to be accurate and good. The input

commands used in dBASE Il PLUS can be categorized according to
the mode in which they work.

a. FULL-SCREEN MODE
@...GET
This command places a variable (field or memory variable) at the
screen location specified by the programmer. In addition, it has
options which allow the programmer to restrict the operator's
input.
READ [NOUPDATE]
This command places the cursor in variables which have been

placed on the screen with @...GET. This enables the operators to
enter or edit data in the varaible.

b. COMMAND-LINE MODE
Memvar:
ACCEPT (character type)
INPUT (date, logical, and numeric types)
WAIT (character type, one character only)
Of course, the most frequently Lused commands for receiving
communications from the operator s the @...GET/READ

39

"
"

O T

gt

-
L 3

gy

“ % - -
r

L -
b l'.‘ {,ﬁ'} v . .'A’

AR
\.“, e



/
¢

’ - -y Y,
St ol ol ol e n

often used to simply pause the program execution until the
operator hits any Kkey; the keystroke itself {s usuall disregarded.
ACCEPT and INPUT are usually used for quick utility type
applications where a high degree of error trapping is not required,
or when {t is desirable to give the operator lots of flexibility, such
as in programmer's utilities. ACCEPT will only accept a character
type literal while INPUT will accept an expression of any data type.
Screen placement and appearance of @...GET are the same as
for @...SAY, which are mentioned above. There is one combination
form, the @...SAY...GET which places the GET <variable> on the
screen irmmediately following the SAY <prompt>.
@ 5, 0 SAY 'Your name:'
@ 5,14 GET memvar

@ 5, 0 SAY 'Your name:' GET memvar
These both produce the same resuits. The first form makes writing
some screen easier. The second form runs faster.

¢. FORMATTED INPUT
The @...GET command offers the programmer a variety of
options for limiting the data that the operator can enter. For
example, a character type variable can be limited to accepting
only numbers from the keyboard. The syntax and formatting
options are:
@ <coordinates> GET <variable name> <format option>
<variable name> = A currently active memvar
| A field in the currently selected
database file
<format option> = PICTURE '<picture template>'
| FUNCTION ‘{<function>}'

e e " PR .~ = S -
S A S i i Ay L S ‘-\&\.




PPN o

g
P

. . .
- \‘x’-..‘ LS

| RANGE<n1>,<n2>

d. FORMAT FILE
Format files are like command files except that they

contain only @...SAY and @...GET commands and comments.
Format files allow the formatting of the screen during the
full-screen interactive database commands APPEND, CHANGE, EDIT,
and INSERT. An open format file also affects the execution of the
READ command by clearing the entire screen, resetting the GET
counter, and redisplaying its SAYs and GETs. DBASE Ill PLUS can
have one format file for each of its ten work areas if this will not
exceed the limit of thirteen simultaneously open files of ail kinds. It
also closes any open format file in the currently selected work area
when a new database file i{s opened or any current one closed.
This command open a format file:

SET FORMAT TO <format filename>
These commands ciose all open format file:

CLEAR ALL

CLOSE DATABASES
These commands close only the open format file in the currently
selected work area:

CLOSE FORMAT

SET FORMAT TO

USE

H. SUMMARY

In dBASE III PLUS, there are no ARRAYs, RECORDs, SETs,
FUNCTIONs, ENUMERATED TYPEs nor LINKED LISTs. These were
considered to be necessary for structured programming, but quite
an overhead to a database system. dBASE 1ll PLUS uses nothing

4]

TN TN S e ST LT
) v i N e et

........



i ae a omb

&

e R

e %]

. l - l‘!‘l 4, U N

g4t $.4 g.0 ! N * ~ - * U Ve VN 'S AN ‘ol 908 0 da8 Ul 4.8 40 0 0.0 8 0" M Y s ta‘ath gt

but two-dimensional tables to implement its data structures and
file organizations. dBASE IIl PLUS consists of a set of commands
each with a “syntax." Each command is extremely flexible and can
perform an infinite number of variations on a particular task. It's
invaluable flexibility requires more learning effort on the part of
the user.

The control structures such as SEQUENCE, BRANCH, REPETITION
and those algorithms which are used in most programming
languages are available in dBASE Il PLUS too. But dBASE 11l PLUS
does not support recursion.

In general, dBASE 11l PLUS is a versatile database manager. 1t is
designed to handle the many business applications in which the
user needs to manage large amounts of repetitive information. It
can function as a simpile file manager. It can handle the complex
issues In relating files to one another, and it can be used as a
complete language like Pascal or BASIC.

42

el e e e e L PR T I e _t At e LTI I P I R T -
] ’r‘vﬁ " 'u"‘\"n > J'V-f"'l"l" '-"\"‘\’_'." “\‘_x_ \’_.J_ -{"J J.‘_--_ -‘_-";I“-‘_- ‘\ ER __ __- R ‘h.‘a ._

......

------
~~~~~

ca™

WU B A AN R LA A URAT UM R LA T AN AT O LA AT URIAUA UPS ong el al alalo-aty abo gt ‘2 A'm" &%, ata gl g'28-2 4% tia 8'

2 s 5 AN

b Y

el M S P e

naAs

IV. STUDY AND ANALYSIS OF ORIGINAL PROGRAM

A. BACKGROUND

The original program - written in Pascal, is a typical inventory
management system software, written for Import/Export
Company, which purchases feed stuffs such as hays, grass, etc.,
from farmers in California. Those feed stuffs are compressed and
packed into 9X40 foot containers and shipped to foreign
countries. This program was written in order to keep track of the
sales and the purchase. For instance, how many tons of the
grass have been purchased? How many of them have been
shipped? At what price, and what time? How many tons left need
to be shipped to complete a contract? The analysis of the algorithm
and data structures used in this program are discussed in detail in
the following sections.

B. THE ENTITY-RELATIONAL DIAGRAM

Sales and Purchases are an independent process within Hanaoka,
as can be seen on the next page (Figure 4-1). The E-R diagram of
Hanaoka was divided into two sub-diagrams. The upper part is for
Purchases and the lower part is for Sales. There are some identical
components in these two sub-diagrams. |

In Sales, each sale record contains one customer and several
time-of-shippings records. The sale record is used to update the
sale contract according to the contract number. The sale contract
uses the invoice number (input from screen) concatenated with
the contract number as a new invoice number to update the sales

shipment record. Data s passed from the sales record. Also the
sales record can be used to check the hash file for the duplicate

g p . . . : OU ST TN
et 'ad el b e @'s $'s $'a 8'a s ' 2% L2 h's B's 4% A'a Y DR Y g ORI OO Logt

Tine of ,
Sipping
)
Trusks
,. -
1
1] Aorohese |t ' 1 f
Shipmant "thn Farmer ,

' !
Purchase |1 1 u
Purahas m Contract Hash :
Shipmeat —) .
Arhase | (Coniraet 9 N
ifermetion :
.
\
a4
F

™ :
Contatmer 5
1 [

’

New A

e Figure 4-1 E-R diegram of original progrem o

K

o
)

rd

'

”,

44 .

e e e Y e i e e e P o e e et O NEAT R N I

key. If there is no duplicate key then this sales record can be
inserted into an empty slot of the hash file according to the status
(empty or occupled) of that slot. Each sales shipment can be
updated by the sales shipment record and each sales shipment
contains several containers

In Purchase, each purchase record corresponds to each farmer.
Each purchase record can contain several time-of-shipping records.
New purchase information can be stored into the hash file and
purchase file by checking the slot's status (empty or occupied). One
purchase needs one purchase shipment record which can contain
several trucks records, and can be used to update purchase
shipment records.

C. PROGRAM STRUCTURES

1. Sales

i fsunquery

(e

Figure 4-2 Structured diagram of Sales

The followings 1s the program's jutline for 3aies.
(For detalls, piease reference APPENDIX A)

D A NN P NN NN e s

EEERERARKEEXVXERRXRX XX AEXXEAREETXBREZAXRRE AR X XXX XL XXX R B XXX XX L XL XX XXE

. MAIN PROGRAM *

EEREREBARER AN EXRRERRRE XX XL EEREBERXBE X ERESRER XXX XXX R R XX XXX ERR XN KE K

SEGMENT PROCEDURE fssinquery;
1{31.: tgl Igrompt the query concerning the feed stuff sales files }

END;

SEGMENT PROCEDURE fssnew;

{ to tnput new sales contract into the files }
BEGI

END;

SEGMENT PROCEDURE fssshipment,
{ té)l I%{nput shipment information for the existing contract }

END;

PROCEDURE fdstfsales,

éE%r&cedure to handle all operations concerning feed stuff sales }

END;
XXX RRRE AR XXX R EEXEE XL AR EX XXX XX EMEE XXX EXEREEEEEEE RN XXX ERXRRE KKK
. FSSNEW x

EEERERERARARELERXLXE B AR ERXR LR ERXEXEE XXX XXX XXX ER XA KA XX KERKR KK KKK

SEGMENT PROCEDURE fssnew,

PROCEDURE tosconvert,

{ converts timeofship array input}
BEGIN

END;

PROCEDURE getfssinfo,
{ input all pertinent info for new sales contract }

FUNCTION proceed : boolean;

{ returns true if the input line is not empty, so not to allow
null input }

BEGIN

END;

PROCEDURE tosinfo;

{ handles one input array timeofship, different proc since the
input format differs from other input,i,e., makes procedure
READNEXTINPUT too iong }

BEGIN

END,

P S 5 % Y S Y8

)

fssinquery getfssinfo -
'
fssmodify :
o
¢
readnextinput '
o3
ht
proceed tosinfo j
tosconvert o
Figure 4-3 Structure diagram of FSSNEW .
PROCEDURE readnextinput; .
{ hatm}ile one input at a time, var lineno determines which o
inpu
BEGIN -
END, »
-
PROCEDURE fssmodify; bt
{ re-reads any specified itnput once more } L
BEGIN
END; R
BEGIN N
END; .
BEGIN

END.

TR0 0020 20020200 200 200 200 20 20020 208200 200 200 200 200500 2000 20030 20 300200 200 00 200200 0K 300208 200200 200 200 00 00 20 30 2 200 200 30 200 00 200 20 30 20 300 200 200 200 0K 3G 30 200 200 20 300 00 0 2 2 2 200200 200 0 o

x FSSSHIPMENT x p

AR K 2002 200000 200200 200 200 200 200102 20020 200 200 0K 200 0K 20 20 30 20 20 200 200 20K 2 2K 200200 200 200 200 200 200 00 200 200 20 200 200 200 200 200 2K 2 20 200 200 200 300 200 20 2K 2 20 200 200 200 20K 00 20 2K 20 2 oK

47

SEGMENT PROCEDURE fssshipment,

PROCEDURE contconvert,
{ converts container array input from string to approriate data

type
BEGIN
) END;

PROCEDURE computepart,
does all necessary conversion (Ibs->shorttons) and computation

BEGI
) END,

PROCEDURE getshipinfo;
{ get all pertinent info for a shipment}

FUNCTION sproceed : boolean,
{ same as FUNC proceed }

BEGIN
END;
/\
getshipinto | |computepart shippaperwork
“ ﬁ ‘
nextshipinput behipinv | |bshippakiist | [beartarigin
T
N
aphtocert |
signaturs — ;
fumigation bphtocert
underline

Figure 4-4 Structure diagram of FSSSHIPMENT

Cog g

‘e - [

-
-

LAY

PROCEDURE nextshipinput,

{ reads one input at a time }
BEGIN

END;

PROCEDURE shipmuodity;

é Eré reads specified input once more }

END;

BEGIN
END;

PROCEDURE shippaperwork;
{ produces five documents pertaining one shipment }

PROCEDURE signature;

{ write closing (like rubber stamp) }
BEGIN

END;

PROCEDURE underline;

{ prints “-" for specitied no of times }
BEGIN

END;

PROCEDURE ashipinv;,
{ top half of invoice }
BEGIN

END;

PROCEDURE bshipinv;

{ bottom half of invoice }
BEGIN

END;

PROCEDURE ashippaklist;

{ top half of packing list }
BEGIN

END;

PROCEDURE bshippaklist;

{ bottom half of packing list }
BEGIN
END;

PROCEDURE acertorigin;

{ top half of cert of origin }
BEGIN

END;

PROCEDURE bcertorigin,

49

- e . e mimce et e e mp vt e sl - - oot ‘
‘ _.hl_. § . . -'\""\{\}-.- n'-‘ D T - AR A ._‘J.‘ .‘. - ..l'\'.‘ q'.. ,. Il

{ bottom half of cert of origin }
BEGI
END;

PROCEDURE aphytocert;

{ top half of phytosanitary cert }
BEGIN

END;

PROCEDURE bphytocert,

{ bottom half of phytosanitary cert }

BEGIN
END;

PROCEDURE fumigation;
{ furnigation certificate }
BEGIN
END;
BEGIN { shippaperwork }
END;

BEGIN |
END.

EXEREAXEXRXXE KX XX R XX LR X XXX XEXEEREX XK ERXEEX KX EREREXEKEKE KKK KX R XK XK REXEARK

* FSSINQUERY

RN R R0 A I SN0 TN K TSI ORI0E HCHEIC0 JOORKEEC I ACNCB NCN R B N

fssresiduecheck

fssinquery
onecontrinfo
listtop listhottomn case3sub

/\

priisttop priistbottom

listship

priistship

Figure 4-5 Structure diagram of FSSINQUERY

SEGMENT PROCEDURE fssinquery;
{ handles queries of following types:

"-“ c"’ ',ﬁ\.p'{ -(“-..') ‘J';'JN‘.“'J':‘J';'."-‘.?.'I.."- A .

1. list all customers by company name. "
2. list all contracts of one customer. \

o
3. list all information (include all shipments made) of one v
contract

4. list available spaces in FSSFILE and FSSSHIPFILE } E

N

PROCEDURE listtop; P

{ lst top half of contract information } !

BEGIN

END;

PROCEDURE listbottom; 3
{ 1ist bottom half of contract information } !

BEGI

PROCEDURE prlisttop; <
{ same as listtop but outputs to printer } N
BEGIN '

END; M

PROCEDURE prlistbottom, -‘,t-
BEGIN R
END; i
PROCEDURE listship; S

{ st shipment info to console } R
BEGIN =
END; '
.

PROCEDURE prlistship; :;‘
{ list shipment info to printer } o

BEGIN A
END; r
PROCEDURE onecontrinfo; ~:
{ handles query of type 3 })
PROCEDURE case3sub; -

{ handles the shipment info of one contract and printout of Y
contract info to the printer } =
BEGIN NV
END; S

BEGIN d
N

o

2

S -

Y

2]

WY ’%;ﬂt’- LR LT A PR AISE AT AT M AT N AT ST WO A A AT SN =, A A AT AN A N -

PROCEDURE residuecheck;
{ handles query of type 4 }
BEGIN
END;
BEGIN { FSSINQUERY }
END; { Note query 1 & 2 is handled in this main procedure }

2. Purchase

fspnew fspshipment

fspinquery

Figure 4-6 Structure diagram of Purchase

Followings are the program's outline of purchase:
(For detalls, please reference APPENDIX A)
======================== PURCHASE =z=z=================z====

BRI IR K2R 00000000 200200 20020020 20 20020 020 K 00 00 0K 00200 200 0K 200 20020020020 20 20 2 2000 20 200 0 00 00 00 00 200 00 200 2 2K A 00 00 0K 00 200 20 002 K ok ok

* MAIN PROGRAM *

f o2 et b bbb et et todt et et b e ettt et ettt ettt ettt ot ittty ettt ¢ty

SEGMENT PROCEDURE fspinquery;

{ to prompt the query concerning the feed stuff purchase file }
BEGIN

END;

SEGMENT PROCEDURE fspnew;,

{to fnput new purchase contract into the files }
BEGIN

END;

ety fah et e Rat'2 8t et e ‘ata @t 1. oavs dby A'a 2"s A Ata &V, ' YAt ey o tab Ay ol tad “ul %2t val. al. "2t >, Tl Mah Ao ol Vab Mg aaf ot Fal V.4 gt € -,

SEGMENT PROCEDURE fspshipment,
{ to input shipment information for the existing contract }

. -
P

-

: BEGIN
END;
' PROCEDURE fdstfpurchase;
?: { procedure to handle all operations concerning feed stuff purchase
. BEGIN
s END;

A0 M0 00200 200 0 200 200 200200 200 00200 020 200 200 20200 2 200 200 00200 2K 200 20 200 3 20C 3 20C 20 200 200200 200 200 20 200 20 200 200 200 200 200 200 20K 2K 20€ 200 60 207 200 200 20€ 200 0 200 € 200 20 200 20K 30 200 200 3 200 30 2 3¢

" * FSPNEW *

TR0 20000000 22200 0020000000 2K 20 200200200200 0K 000 020 200200200 00 0 A T2 2200 00200 MG 20205 20K 200 2000 0K 2K 2 200200 2020 0 2 K XK 2 2 K

~ T

v fspnew
/\

E fspinquery getfspinfo

;{' fspmodity

. nextpurinput

- < —

N

tosconvert

Figure 4-7 Structure diagram of FSPNEW

v SEGMENT PROCEDURE fspnew,

P L o

PROCEDURE tosconvert,
{ converts timeofship array input }

. . . 4t , ot oAb, alavate ¥ . f Gud 8.0t 4 0 0'8,0°¢
PRSI N A S UV L (] v Y 4'4 2'h gV YUY s e 828" L4" 0" -

3 BEGIN
5 END;

¢ PROCEDURE getfspinfo,
{ input all pertinent info for new purchase contract }

FUNCTION pproceed : boolean;

" { return true if the input line is not empty, so not to allow
o null input }
BEGIN
A END;
i
N

PROCEDURE tosinfo;

{ handles one input array timeofship, different proc since the
input format differs from other input,i,e., makes procedure

s readnextinput too long }
; BEGIN
b END;

PROCEDURE nextpurinput,

{ handles one input at a time, var lineno determines which
input }

>, BEGIN

END;

PROCEDURE fspmodify;
{ re reads any specified input once more }

- BEGIN
: END;
BEGIN
' END;
. BEGIN
¢ END;

200200200200 208 200 200 20 30 200 30 28 200 00 35 200 00 .20 200 20 200200 2 2 200 20 306 200 200 20 200 00 300 200 200 268 200 200 20 2K 580 00 30200 0 300300 200 200 300 0 20200 200 206 2 20€ 3 200 200 3G 20 200 € 200 20C 2 200200 2K 200 0K 0K 200K XK K

x FSPSHIPMENT ¥

20200207 2 20C200 20 20 200 200 20 26K 20K 200 3K 200 200 200 20 200 200 200 20K 200 200 00 28 20€ 200 20 200 200 200 30 200 200 20 2K 200 300 2 20€ 200 20 2K 20€ 200 200 20K 280 200 200 0K 20K 200 20 26K 200 200 200 3 200 200 20 20K 500 308 2K 30C 200 2 0K 20K 200 200 3K 20 3¢

SEGMENT PROCEDURE fspshipment,

PROCEDURE truckconvert,
{ converts truck array input from string to approriate data type

BEGIN
END;

54

L]

" '\c“’\ ,“-"‘- *'. ". I'-' ’. - .‘ ‘“:. _', ’

PROCEDURE gettruckrate;

{ decides the price rate and convert into approriate data type }
BEGIN

END;

fspshipment
getpurshipinfo fspcompute |
purshipmodify truckcostcomp

nextpurshipinput

R gettruckrate

psproceed | | truckconvert

Figure 4-8 Structure diagram of FSPSHIPMENT

PROCEDURE truckcostcomp;

{ decide the rate base (lbs or short tons) and does the
computation }

BEGIN

END,

PROCEDURE fspcompute;

{ compute the numeric data according the rates and bases }
BEGIN

END;

PROCEDURE getpurshipinfo;
{ get all pertinent info for a shipment }

FUNCTION psproceed;

{ same as pproceed }
BEGIN

33

. O] iah & g ¥ 1
a8y o al e R'a s 8 nafta 4" PO I T O O O O L T T R IR Ry O O R R O O K R O O T O O T OO T R Ow Oy A T U

END;

PROCEDURE nextpurshipinput,
{ reads one input at a time }
BEGIN

END;

PROCEDURE purshipmodity,

{ re reads specified input once more }
BEGIN

END;

s BEGI

END;

XM R 000 A AR R AR A IR A K 2 K A 2 A K K K K 00200 22 o K K K

x FSPINQUERY .
TR 000 200 300 200 28 200 200200 200 200 200 200 200 200 200 00 200 200 200 2K 200 208 200 20 200 200200 20 200 205 500 200 0 200 K 200 28X 200 200 200 200 200 200 20K 200 2K 200 0K 200 208 200 30 200 20 30 20 0K 200 ¢ 200 20 200 2 20C 2K 200 200 o 3K
SEGMENT PROCEDURE listpurcontr;
{ iist purchase contract to the console }
BEGIN
END;

SEGMENT PROCEDURE prlistpurcontr;

) { list purchase contract to the printer }
BEGIN

END;

SEGMENT PROCEDURE purcontrinfo;

{ list purchase shipment information }

PROCEDURE listpurship;

{ list purchase shipment information to the console }
BEGIN

END;

PROCEDURE printpurship;

{ list purchase shipment information to the printer }
BEGIN

END;

PROCEDURE subpurcontr;
{ list shipment informations in sequence } S
BEGIN '
END;
BEGIN]
END; S

listpurcontr listpurcantr| | subpurcontr

printpurship listpurship

Figure 4-9 Structure diagram of FSPINQUERY

SEGMENT PROCEDURE fspresiduecheck;
{ handles query of type 4 }

BEGIN

END;

SEGMENT PROCEDURE fspinquery;

{ handles queries of following types:
1. list all commodities.
2. list all contracts of one commodities.
3. list all information (include all shipments made) of one .

contract '

4. list available spaces in fspfile and fspshipfile }

BEGIN

END;

LR TR

V. ANALYSIS AND DESIGN OF NEW PROGRAM

In order to use the dBASE IlII PLUS to rewrite the original
program, we need to replace the existing set of files by its logical
equivalent. The term " file structure, " refers to the compilete set
of stored data, its division into component sets, and the
relationships that exist among those components. In most cases,
the component sets are files or repeating groups within files. The
relationships that exist among components include access keys,

ordering techniques, redundancies, pointers, and so forth.

It is the whole file structure that must be logicalized. To talk
about deriving logical equivalents of each current file is fruitless,
because the very decision that some of these files should exist at all
may have been physical. So we have to go back and think about
the whole (the union of all data elements), and start from scratch
to divide those files into its component pieces.

The process of dividing those files into its components is called
normalization, which is a process to analyze the functional and
multivalued data dependencies. The objective of normalization is to
avoid redundancy and update, insert, and deletion anomalies.
Each time we normalize a file, we replace a multipurpose file by
two or more files. These files together can accomplish the same set
of purposes as the original. The new files are always more
singleminded than the one they replace. it {requently nappens that
the new equivalent files need to be normalized again.

There are different levels of normalization, named 1st normal
form, 2nd normal form, 3rd normal form, BC normal form,

4th normal form, 5th normal form and domain/Xev normai
form.

A relation is in INF (1st normal form) if it contains no repeating
groups. It is a simple matter to produce iNF from an unnormalized
relation.

A relation is in 2NF if it is in INF and there are no partial
dependencies.

A relation is in 3NF if it is in 2NF and there are no transitive
dependencies. For most practical databases, 3NF is sufficient.

A relation is tn BCNF (Boyce Codd) if it is in 3NF and every
determinent is a candidate key.

A relation is in 4NF if it is in BCNF and there are no multivalued
dependencies.

Before rewriting the original program, we have to normalize the
relations of the files used in the original program, then use those
normalized logical file structures to create new Entity-Relational

diagrams and a new relational database written with dBASE III
PLUS.

A. NORMALIZATION OF SALES

As we can see in Appendix A, the file structures declared in the

original program are listed as follows:

FSSFILE { Status, Number, ContrDate, Customer.Name,
Customer. Addr, Customer.ContrNo, Commodity, Pricebase,
Lc.Number, Lc.ExpDate, Lc.ShipDate, Lc.Bal, Lc.Amount,
IimeOiShip, TotalShip, BalOfShip, IssueBank, DrawBank,
MitiNo, NofShipment, Shipmentinfo}

TimeOfShip { Month, Wgt, Bal, UnitPrice }
FSSHASHFILE { Status, Number, Name, “ommodity, Link}
FSSSHIPFILE { Status, InvoiceNo, Name, Origin, Dest, Etd,
InvoiceDate, TotalBales, TotalNet, Container,
NofCont}

Container { Number, Bales, Net }

59

~"

S W _b_B_>

FSSCONTRACT { same as FSSFILE }
FSSDUMMY { same as FSSFILE }

FSSSHIPREC { same as FSSSHIPFILE }

1. 1st Normal Form

There are three file structures used in Sales, with two
repeating groups in FSSFILE (as indicated with underline) and one
repeating group in FSSSHIPFILE. One temporary file FSSHASHFILE is
used as an intermediate file to map into FSSFILE for updating or
inserting records. This is not necessary in the relational database.

The field STATUS in FSSFILE and FSSSHIPFILE is used to keep
track of the space allocation. In dBASE IIl PLUS, the APPEND and
INSERT take care of this. Again we can eliminate these from the
files. The field SHIPMENTINFO is used as a pointer to point to the
shipment information. Actually it is used to create the relationship
between FSSFILE and FSSSHIPMENT. Again we can eliminate this,
because in the relational database, a relation can be created by
using the same primary key. \

To put these files in 1INF, the repeating groups must be
removed from within these files. After 1st normalization, we have
these new relations:

FSSFILE { Number, ContrDate, Customer.Name, Customer Addr,
Customer ContrNo, Commodity, Pricebase. Lc.Number,
Lc.ExpDate, Lc.ShipDate, Lc< Bal, L¢.Aamount., TotalShip.
3al0tsShip, .ssueBank, DrawBank, MitiNo, NotShipment

FSSSHIPFILE { InvoiceNo, Name, Origin, Dest, Etd, InvoiceDate,
TotalBales, TotalNet, NofCont }

CONTAINER { Number, Baies. Net } .o

TIMEOFSHIP { Month, Wgt, Bal, UnitPrice }

2. 2nd Normal Form

We have separated repeating groups from files, and we need

to create relations between these new files. In TIMEOFSHIP, the
fleld MONTH could be a primary key, but the month can be
repeated every year. So, we can compose NUMBER from FSSFILE
with MONTH as a primary key (indicated with underline), because
TIMEOFSHIP is separated from FSSFILE.

Since we delete SHIPMENTINFO (a pointer) from FSSFILE, we
lost the relation with FSSSHIPFILE. We need to put a field to
connect FSSFILE and FSSSHIPFILE. We can use the unique NUMBER
in FSSFILE to be the foreign key in FSSSHIPFILE (indicated by
postfixing a *).

The same thing happened with CONTAINER. Number can be
composed from CONTAINER with InvoiceNo from FSSFILE as the
primary key in CONTAINER to avoid those anomalies.

But here we have problems with 1NF. First, the
redundancy, customer records are in FSSFILE, and one customer
can have many sales information records in FSSFILE. So each time
'Ne nave new sales contract with the same customer., ‘we aave o
put in the redundant customer's data. Second, the insertion
anomalies, new customers cannot be added until they have signed
a sales contract with the company. Third, deletion anomalies.
ielete 21 sales <zontract could delete all the nformartion 2
lustomer I Chat customer nas Jnly one sales ontract with “he
company.

So, we need to go through 2NF, to eliminate the
lenendenc:2s mentioned apove. Ne separate "he susiomer r20ora

irom r3ZriLZ. Now the reiations are like the foilowing:

6!

.. \(.\r\f L2y

"

Pt o A

CUSTOMER { Name, Addr, ContrNo }

FSSFILE { Number, ContrDate, Commodity, PriceBase,
Lc.Number, Lc.ZxpDate, Lc.ShipDate, Lc. Bal, Lc. Amount,
TotalShip, BalofShip, IssueBank, DrawBank, MitiNo,
NofShipment }

FSSSHIPFILE { InvoiczNo, Name, Origin, Dest, Etd,
InvoiceDate, TotalBales, TotalNet, NofCont, Number* }

CONTAINER { Number. InvoiceNo, Bales, Net }
TIMEOFSHIP { Number. Month, Wgt, Bal, UnitPrice }

3. 3rd Normal Form

A relation is in 3NF if it is in 2NF and there is no transitive
dependency. As we can see in the relations above, there is no
transitive dependency. These relations are already in 3NF.

But, the CUSTOMER was just separated from FSSFILE, and
there is no relation between CUSTOMER and FSSFILE. Perhaps the
field CONTRNO 1n CUSTOMER can be used as a primary Key. This
could cause deletion anomalies, if we delete a record in FSSFILE,
we might lose the record of CUSTOMER.

Ta avold these problems, we can .ntrnaducz “he field MaME n
CUSTOMER to De a foreign key in FSSFILE (indicated by postiixing
with a *).

CUSTOMER { Name, Addr }

FS3FILT lumper, lontrdate, ommoaitts driccRase.
_c Numper. .c ZxpDate., .2 ShipDate. _: 3a:. _Z amounr.
TotalShip, BalofShip, IssueBank, DrawBank, MitiNo,
NofShipment, Name* }

FSSSHIPFILE ! 'nirojceNo, Narre. Train. Teat. T
‘nvoicelate. TortaiBates. Torrailer. NotTont. Number®

CONTAINER { Number, InvoiceNo, Bales, Net }

TIMEOFSHIP { Number, Month, Wgt, Bal, UnitPrice }

We added one more field named PhoneNo to CUSTOMER to
make it more useful. Then we renamed those file names and field
names to make them more meaningful. The final result is:

Customer (cname, addr, phoneno)

S~Contract (spumber, contrdate, commodity, pricebase,
lcnumber, lcexpdate, Icshipdate, lcbal, lcamount
totalship, balofship, issuebank, drawbank, mitino,
nofshipment, cname*)

Timeofshipment (month, snumebr, wgt, bal, unitprice)

S_Shipment (invoiceno, name, origin, dest, etd, invoicedate,
totalbales, totalnet, nofcont, snumber*)

Container (cnumber, invoiceno, bales, net)

4. New E-R Diagram
Until now, we can draw a new Entity-Relational diagram
(Figure 5-2) with the developed relations. As you can see the
Entity-Relational diagram of the new program is much more
simple and readable than that of the old program.

-5 hY ALYz Sty taroc

Also, we used those rejations to create data structures 1or
the new program with the convention of dBASE 111 PLUS

S-Contract
Field Name Iype width Dec

63

P BV AR AP IEIRERY AT NP IS A A I P P I P TR NI - . . L

- . .t i) . LY -‘- 'l. -) :
A T gl e e e A . o Y) Ca e N P PRI, AT

.........

>

L

>

o . Py

Ld

RIS

"

eSS

ot

WAL

Ty W

g vy

ContrDate
Commuodity
PriceBase
LcNumber
LcExpDate
LcShipDate
LcBal
LcAmount
TotalShip
BalofShip
IssueBank
DrawBank
MitiNo

NofShipment

CName

S-Shipment

Field Name
InvoiceNo
Name
Oorigin

Dest

Etd
InvoiceDate

Character
Character
Character
Character
Character
Character
Numeric
Numeric
Numeric
Numeric
Character
Character
Character
Numeric
Character

Type

Character
Character
Character
Character
Character
Character

64

50
80
12

15
15
15
15
30
30
18
15

15
25
25
25

N N NN

“Rag b 8 800 8,0 0a8 fm $ a0 Sa8 $ 8 Fog Vot b0y 0d ¥

........

Bt e et a0t A e 08t

Fogte gt gty at p'aaloAval ‘Al tab

T

M Time of
Shipment

Figure 5-1 New E-R Diagram of Sales

TotalBales Numeric
TotalNet Numeric
NofContner Numeric
SNumber “haracter
TimeofShipment

Fleld Name Ivpe
Month Tharacter
SNumber Character

3

12

...............

cad .8+

PP

Vay raq gt g\ ptaaeed's pas s R Y Y I T O O R e IRV W ARV R U R

wgt Numeric 15

Bal Numeric 15

UnitPrice Numeric 15

Customer

Field Name Tvpe Width Dec
” CName Character 25

Address Character 50

PhoneNo Character 13

Container

Fleld Name Ivpe width Dec

CNumber Character 12

InvoiceNo Character 15

Bales Numeric 15

Net Numeric 15 2

B. NORMALIZATION OF PURCHASE

With all the procedures we applied to the Sales, we have a
more simple, more structured relational database of Sales. We can
applied these procedures to the Purchase too. The following are
the results when we went through the Purchase with
normalization, E-R diagram, and redefined data structures.

First, we study the !lle structures declared :n the ariginal
program.

FSPFILE { Status, Number, ContrDate, Farmer Name,

Farmer. Addr, Commodity, TimeofShip, TotalShip, BalofShip,
Nofshipment, Shipmentinfo }

TIMECFSHIP | Month, Wgt, Bai, UnitPrice

/

FSPHASHFILE { Status, Number, Name, Commodity, Link }

FSPSHIPFILE { Status, Truck, NofTruck, TotalBales, TotalNet,
Payment, TotalTruckCost, Link }

TRUCK { MthDay, WgtTicketNo, Bales, Net, Cost }
FSPCONTRACT { Same as FSPFILE }

FSPSHIPREC { Same as FSPSHIPFILE }

1. 1st Normal Form
For the same reasons in Sales, we deleted FSPCONTRACT and
FSPSHIPREC, and eliminated fields STATUS, LINK, SHIPMENTINFO.
Besides, the Number in FSPFILE is purchase number, so we
substituted with the new field name PNumber.
Now, the new file structures look like these:

FSPFILE { PNumber, ContrDate, Farmer.Name, Farmer.Addr,
Commodity, TimeofShip, TotalShip, BalofShip, Nofshipment
TIMEOFSHIP { Month, Wgt, Bal, UnitPrice }

FSPSHIPFILE { Iruck, NofTruck, TotalBales, TotalNet, Payment,
TotaiTruckCost }

TRUCK { MthDay, WgtTicketNo, Bales, Net, Cost }

After the st Mormai Form

FSPFILE { PNumber, ContrDate, Farmer.Name, Farmer.Addr,
Commodity, TotalShip, BalofShip, Nofshipment }

TIMEZFZHIP { Month, Wgt, 3al, UnitPrice }

67

crr

W

e e I L

’f"""'

R RS

FSPSHIPFILE { NofTruck, TotalBales, TotalNet, Payment,
TotalTruckCost }

TRUCK { MthDay, WgtTicketNo, Bales, Net, Cost }

2. 2nd Normal Form
After the 2nd Normal Form and creating the new relations
with newly separated files :

FARMER { Name, Addr }

FSPFILE { Number, ContrDate, Farmer.Name, Farmer.Addr,
Commodity, TotalShip, BalofShip, Nofshipment }

TIMEOFSHIP { PNumber, Month, Wgt, Bal, UnitPrice }

FSPSHIPFILE { PNumber,PShipNo, NofTruck, TotalBales, TotalNet,
Payment, TotalTruckCost }

TRUCK {}PNumber, PShipNo, MthDay, WgtTicketNo, Bales, Net, Cost

3. 3rd Normal Form
Here we meet the same problem as we did in Sale. The
FARMER just separated from FSPFILE, we created a new relation
between FARMER and FSPFILE.

FARMER { Name, Addr }

FSPFILE { PNumber, ContrDate, Farmer.Name, Farmer.Addr, _
Commodity, TotaiShip, BalofShip, Nofshipment, Name* -

TIMEOFSHIP { PNumber, Month, Wgt, Bal, UnitPrice }

FSPSHIPFILE { PNumber . PShipNo, NofTruck, TotalBales, TotalNet,
Payment, TotaiTruckCost }

TRUCK { PNumber. PShipNo, MthDay, WgtTicketNo, Bales, Net, Cost

68

AN AT RN AN RC AR

Again, we put PhoneNo in FARMER to make it more flexible.
We changed the file names and field names to make them more
meaningful. Then, these are the final resuit:

Farmer (_fname, addr, phoneno)

Purchase_Contract (pnumber, contrdate, commodity, totalship,
balofship, nofshipment, fname*)

P_Shipment (pshipno. pnumber, noftruck, totalbales, totainet,
payment, totaltruckcost)

TimeOfShip (pnumber, month, wgt, bal, unitprice)

Truck (pshipno. pnumber, mthday, wgtticketno, bales, net, cost)

4. New E-R Diagram
With the new relations, we draw a new Entity-Relational
diagram, which looks like the E-R diagram of Sales. (on next page)

5.New Data Structures
P-Contract
Field Name Tvpe width Dec
PNumber Character 12
ContrDate Character 8
Commuodity Character 50
TotalsShip Numeric 15 2
3alorsShip Numeric 15 2
NofShipment Numeric 5
FName Character 25

69

1, gt '"l"""I‘!'""!"‘l'\"‘i‘l‘l'!‘l‘l"Q'l".'l'l' R A AT T R A VU T UV TS T YUY UYL ate ats &' 4's a'a 2" ~af

NG

Farmer
Nl
IM
Purchass
Contract contains Shipment
1
M

P..Smﬁmmt

1
M
Truck

Figure $-2 New E-R Diagram of Purchase

P-Shipment

Field Name Type Width Rec
PShipNo Character 12

PNumber Character 12

NofTruck Numeric 2

TotalBales Numeric 15 2
TotalNet Numeric 15 2

Payment Numeric 15 2

TruckCost

Farmer
Eleld Name
FName
Address
PhoneNo

Truck

Fleld Name
PShipNo
PNumber
MthDay
WgtTicketNo
Bales

Net

Cost

Numeric

Ivpe
Character

Character
Character

Iype

15 2

25
50
13

Character 12
Character 12
Character 8

Character 12
Numeric 15
Numeric 15
Numeric 15

71
BEASAE, \-".r'~',".".-:.r'." P v e et e e T e e el N

..............................

voa

v e
RS

» v
>

i

LSS

LA

TN

.'f"f‘f..fsf.'

. o

» r-'n" -'J

o

=/

AP 2% o
L% T
5 4

Py
AR

2
[

” . ‘Saba‘ha‘ta*
WL PN R 1§ Saf Ty rap ab g ‘e t'at’ ' fat K YUY T 2tk tad el Y RV U

V1. STUDY OF MAINTAINABILITY OF THESE TWOQ PROGRAMS

The term “"maintainability” is used to describe the ability of a
software activity that occurs following the delivery of that
software product to the customer. A software product possesses the
characteristic MAINTAINABILITY to the extent that it facilitates
updating to satisfy new requirements.

A maintainable software product is one which is understandable,
testable, and easy to modify. One must be able to modify the
product to rectify a deficiency or to add new capabilities or to
allow a program to operate on a different computer system.

The maintenance phase of the software life cycle is the time
period in which a software product performs useful work.
Typically, the maintenance phase in the life cycle for a software
product spans longer than that for the development phase.

Maintainability concerning the ability of a software being making
enhancements to that software products, adapting products to new
environments, and correcting problems. Software product
enhancements can involve providing new functional capabilities,
improving user displays, and modes of interaction, or upgrading
the performance characteristics of a system. Adaption of software
to a new environment can involve moving the software to a
different machine. Problem correction involves modification and
revalidation of software to correct errors. Also, the changing
requirements from users can cost much in maintaining software.

In most software engineering studies, it is shown that
maintainence activities actually break into three main
subactivities. They are . Perfective Maintenance, Adaptive
Maintenance, and Corrective Maintenance.

$ o o

Y

PIFZIPS

O LA

~
& LR

.

-

Perfective maintenance 1s the act of improving the software

o

function by responding to customer- and programmer-detinea
changes. This is not the portion of software maintenance that is
involved with fixing errors. But it is the biggest maintenance ume
consumer.

Adaptive maintenance is the act of changing software to adapt
to environmental changes. If the computer on which the software
rans is going to get a new version of the operating system, or the
total system data base must have some detail level changes (for
example, if the ZIP code is increased from five to nine digits), the
software must be adapted to meet those changes.

Corrective maintenance 1s the act of keeping software free from

errors and guarantees the integrity of data.

A. THE ORIGINAL PROGRAM
1. Maintainability of Record Structures

In the original program, the data structures used in defining
files are records. As we know that Pascal has very strong typing,
this means that the records used to define files have domain
constraints. A domain constraint simply states that values of the
attripute n questicn are required 0 oelong to the set of vaiues
constituting the underlying domain. Here we discuss the
maintainability of the original program and the new program by
checking the record structures and -ontrol strucsures

1. Add Fielas

rRererring -0 -he records and :lle Jec.arations > -iie originai

program in Appendix A, we can summarize them as follovw"

SALE'S FiLZ JETLARATIONS

73

J,‘b’. ! N '\ ' .| '.(‘.f-..'-'{'-._\.,;-__."."‘. _'.'_ .._.. - -(‘-.. AT A “,n“;_ .r".'\.'_‘{_ “

fssfile : FILE OF fsstype;
fsshashfile : FILE OF entry;
fssshipfile : FILE OF shiptype;
fsscontract, fssdummy : fsstype,
fssshiprec : shiptype,

Now, there are one file (i.e,. fssfile) and two file buffers (i,e.,
fsscontract, fssdummy) using the same data structures:

tsstype = PACKER RECORD
status . statustype;
number : string[12];
contrdate : datetype;
customer . customertype,
commodity : string(50];
pricebase : string[80];
Ic . letype,
timeofship | ARRAY[1..7] OF tostype,;
totalship, balofship : real,
issuebank, drawbank : string[30];
mitino : string(18];
nofshipment : integer;
shipmentinfo : integer,

END,

Within this record structure, there are five different
user-defined data types:

statustype = (occupled, empty);

datetype = PACKED RECORD
month,
day,

vear nteger.
END,

customtype = PACKED RECORD
name - string{25];
aadr string 50},
contrno = string(il],
END;

lctype = PACKED RECORD
number : string[12];

expdate,

shipdate : datetype,

bal,amount : real,
END;

tostype = PACKED RECORD
month,wgt . integer,
bal, unitprice . real;
END;

What is interesting is that inside lctype, there is a datetype.
Now datetype has been referenced in a different hierarchical
level. Suppose we are going to put a new field, say TIME, in
datetype, and suppose that we only use TIME in contrdate, not
in lctype. This causes some troubles. First, we have to define a
new type, say datetimetype, which has an extra field that
contains the time of the event. Second, we need to write another
user-defined function to check datetimetype besides function
DATECHECK. Third, we need one more procedure to convert
datetimetype besides procedure DATECONVERT. Fourth, after all
this has been done, we need to recompile the source program,
redebug, recompile, redebug, and so on. Also, within FSSNEW, in
READNEXTINPUT, we have to modify statements to meet the new
data types.

The same problems occur if we want to add one field,
say phone number, to customtype.

Now. lets have a look at another file structure 'n

Sale, which :s referenced by tssshipfile and fsashiprec

shiptype = PACKED RECORD
status = statustype,
tnvotveno - string(1%],
name,
origin,
dest . string[25],

75

......

v vw

PR Y T A A A RN

XX

M
»

L2 -..l.l

Sy

P AR AR

B0

N SRS

etd,
invoicedate : datetype;
totalbales :integer;
totalnet . real,
container : ARRAY(1..20] OF contype;
nofcont : 0..20;
link : integer,
END,

In this file type, three user-defined data types being referenced

statustype = (occupied, empty);

datetype = PACKED RECORD
month,
day,
year : integer,
END,

contype = PACKED RECORD
number * string[12);
bales : integer;
net . real,
END;

The same situations have to be considered if we want to add fields
into these three data types or the file type
b. Delete Fields

What will happen if we delete the f(ield year f(rom
datetype, or delete contrno from customtype ’ How much
trouble can it cause ? The same as above ? Will we lose all the
data keot in that fieid? Of course There .s no way to prevent ‘*his,
gven an 2xperienced programmer -ises structured-programming
techniques such as Information Hiding The reason is, Pascal was
designed for general programming environments, peoples can use
Pascal t0 design an Jperating Svstem. or a compiler, nr a 1atabase

systern or any oJther programs that meet scientific or Dbusiness

requirements

1
¢
E
N
}

Same problems happen with Purchase Let's look at
Appendix A

PURCHASE'S FILE DECLARATIONS

{spfile FILE OF fsptype,

fsphashfile FILE OF entry,

fspshipfile FILE OF fspshiptype,

fspcontract (sptype,

{spshiprec (spshiptype,

Again, there are one file (1 e, !spfile) and one file buffer

(1,e , tspcontract) using the same file type

fsptype = PACKED RECORD
status statustvpe;
number string{12],
contrdate datetype,
farmer farmertype,
commodity - string(50];
timeofship | ARRAY(1 7) OF tostype,
totaiship,
balofship : real,
nofshipment,
shipmentinfo . {nteger,

END,

within this record type, there are five different user-defined data

types -
statustype = (occupled, empty),

latetype = PACKED RECORD
month,
day,
year ' integer,
END;

‘armer--s/pe = PACKED RECIRD
name = string(25],
addr = string[50],

END;

tostype = PACKED RECORD
month, wgt . integer,
bal, unitprice - real,
END,

The same discussions can be used here as we used in Sales We

have the same conclusions

B. THE NEW PROGRAM

dBASE lIl PLUS is a versatile database manager [t is designed to
handle the many business applications in which the user needs to
manage large amounts of repetitive information. it can function as
a simpie file manager, it can nandle the compiex issues in relating
files to one another, and it can be used as a complete computer
language like Pascal or BASIC Its fast development means that
appropriate jobs can be completed in much less time with 4BASE
II1 PLUS than with Pascal or BASIC It is possible to stop and start
dBASE I1l PLUS between instructions and so have a microscope into

the commands Pascal and BASIC are compiled, so {f things go

wrong, it IS very nhard 1o discover where the mistake was made

In dBASE 1Il PLUS, when changes are made the results appear
instantaneously From the dBASE IlI PLUS prompt, it is possible to
g0 anvwhere and see anvthing Zvervthing s open 'o nstant
qnspecton and thange “his <ind I power :an 2e .ts ywn Jroaplem
dBASE (Il 2LUS nas the disadvantage of deing a highly accessibie
language You can always single step your way through your

command files, make never ending, instantaneous changes with

MODIF™Y ZCMMAND. 2t¢

dBASE 11l PLUS has sophisticated yet easy indexing This means

that a list can be organized in several different ways

simultaneously and that any item can be found in a traction of a
second in a small list (says less than 2000 records) and only a few
seconds in a list of many thousands of records

dBASE III PLUS is far from a perfect programming system
Frequently there are bugs where the program simply does not do
what it is supposed to do.

1 Maintatnability of Record Structures

a. Add Fields
dBASE 11 PLUS fully supports the Relational Data Model
The flles are created as two dimensional tables At dBASE Ill PLUS
dot prompt, Just type in
CREATE <!filename>

The effect of this action 1s that dBASE [l PLUS sets up a screen
layout, expecting your [ile-definition entries You just prowvide
information for that file At this point, dBASE 11l PLUS wants you
to specify the name of each field you want to define, the type of
the field, the length of the field, and the number of decimal
places, if the field is a numeric field Here is an example of file
structure CUSTOMER used in sale

Structure for database @ A . customer dbf

Number of data records: 0

Date of last update - 05/01/87

Field Field Name Type Width Dec
1 TNAME Tharacter 2<

2 ADDRESS naracter <0

3 PHCINENC ~haracser 2

*= Total ** 89

Perhaps you want to change the structure of one of the
ex:isting llelds, maybe 1 name change, a type :hange, > 2a leng'r.

change), or perhaps you want to add one more field into the

79

structure Regardless of the kind of change you want, 1t would
logical to make changes anytime This does not mean, however
that you cannot alter the structure of an existing database that
contains data records You can change structures at any time, n
any database
To add a field in this file structure, enter
USE CUSTOMER <«cr> (Not necessary if the file is
already in usej
MODIFY STRUCTURE <cr> or
MODI STRU
This brings up the structure of the file on the screern Ther.
use the combination of cursor controis to add a new field When
you have made ‘he required changes !0 your structure Vou <Zan
either enter CTtr.-W or CJri-END to save the new structure or
enter Ctri1-Q or ESC to change vour mind or the changes made
You don't have to re-compile the program
Of course ! vou have just Created a new file and ‘here
are no data records In It. you can modlfv 1ts structure at wii..
without any adverse effects Yet, the most important -onsider atior.
- Future change Future -hanges tc data files 'n a database shoian
De anticipated as mulln as possitie .r. order o Lufler the armourn:
restructuring required Future changes encompass ‘hree area:
hidden Kkeys. addition of dependen! fieids and high-usage ! a
secor.dar xev
Hidden Kevys
Eacn of tne deper.dent ‘ieids in a 1a‘a ‘lie shouis De
examined to determined whether any Mg
becorme Kkev fields in the future Y they are
gdent.lles. thew ar. ether . et o fror

data flle and added to a new data {lie »or e’ :r. "r¢

80

Sal ngd daf val Pavyt hag'at 'y o oancat At cal ¥

existing data file, as long as flexibility is provided to
accommodate future key field changes.
Addition of Dependent Fields
The data file structures should have room for the
4 addition of dependent fields. Even though this will
: require reloading of the records whenever new fields
are added, it should not affect the application
program written.
High-Usage of Secondary Key
If you anticipate that a dependent field acting on
occasion as a Kkey field will be used more in the
future, the data file structures and application
programs should be designed to accomodate change.
This may require the dividing of the data file into
two data files at the very start, or the writing of the
application programs to accept this anticipated future
change

b Delete Fields

To delete a field from data file in database, the above
strategles can be appiled. But when we delete a fleld, the data
retained for that field will be gone, unless you rename the field
name or copy that record data to some temporary store areas.

To delete a {leld, we have to be cautious about if it is a
Zrimar gev 3t a file or not. dBASE !II PLUS has a very important
leature cailed INDEXING. I[ndexing 1s an inherent part of the
dBASE I[II PLUS scenario. If your goal is to write sophisticated
application programs, vyou cannot do so without the indexing

N ‘eature:

) In the process of INDEXing, you inform dBASE III PLUS of
s

,

S 8l

v

YT Y

D e g

) 2

Al

000 B Wag 000 4.8 Yan Uap-tag Ung tad a0 DR AR RO ool QAR 0 Vg fad Yo tad ot tal €af Sap tan $at Vag tall tui Vol tal 3

your intention to create an index file on one or more of the fields
of the master file you are working with.
Index file is created as follow :
.USE CUSTOMER <cr>
.INDEX ON CNAME TO CUSTINDX <cr>
This results in the creation of a separate file called an
index file, whose name is CUSTINDX. You can provide any
primary name you want. dBASE !lI PLUS provides the default
extension of .NDX. An index file is just an index file. It is not a
dBASE III PLUS database. It only contains pointers to the actual
records in the data files.
Now, suppose you want to delete the field called CNAME!
What is going to happen? How can CUSTINDX index on? Will you
lose all the data records? Without that field which the index file
indexed on, you cannot manipulate that file, like DISPLAY, LIST,
PRINT, etc,. You have lost them. So, before you delete CNAME you
might want to¢ re-index the CUSTOMER on another field. You can
then delete CNAME.

RN

.........

T R TR T R I LT AT UR, Tat oY taii gl taf Sut tat Salotat et tap tan sat .t o Nag sal lag vat g il tag tug Sag® A tad tal Aal tab |, $.%4
\

AN AR

Fe X, T,

LLhLSYN

o

s
St

A o .
BT Ll e N A Bo¥ 0, VPN

2. Modifving Functions in Pascal Program

Pascal is a block-structured language, and a
block-structured language requires the develpoment of new
run-time techniques. Since Pascal procedures can be recursive,
there can be several instances of a procedure active at one time.
Hence there must be some provision for the dynamic creation of
activation records to hold the state of these instances. Therefore,
the static “one activation record per procedure” techniques will not
work. Also, we have seen that Pascal provides dynamic memory
management by allocating space for the locals of a procedure on a
stack. This storage is allocated on procedure entry and deallocated
on procedure exit. This means that variables cannot be statically
bound to memory locations as Is common in FORTRAN and
assembly languages. In Pascal, activation records represent the
state of an activation. Procedures require both static and dynamic
links. The static link is set to the environment of definition and the
dynamic link points to its context. Procedural parameters are
represented by closures. Pascal, Algol, and many other languages
allow procedures and functions to be passed as arguments to other
procedures and functions. Allowing functions to accept and return
other functions leads to a very powerful style of programming,
called functional programming. Functional programming
languages must use a different discipline for the allocation and
deailocation of activation recordas.

S0 far, we have studied the wvarious of data typing, various
discipline of memory allocation and various considerations of
procedure calling and return. We know once we have developed a
orogram for odne appiication, ts led uip to that apgiication. [t s

very difficult to add one functicn or eliminate one function from

85

TR AR R A R R SN S S

o

S catotal tag vy

+,
Y,

O T D S T T O T O TR Ty

that program. Because, all the procedures are dependent on each
other, and all the data declarations, all the programming codes
was so program dependent.

B. MODIFIABILITY OF dBASE III PLUS
1. Modifying Data Fields in dBASE [II PLUS Program

If you are modifying the structure of an existing database
that has data-records in it, note that you should choose vour
modification cautiously. Consider the following situation. Suppose
we have a character fleld called SNUMBER that has, as data, a
combination of digits and characters, starting with digits, and you
want to change its type to numeric. Since dBASE III PLUS will not
retain character data in a numeric field, at the end of the
meodification, we will have lost all the character data from that
SNUMBER field! Only the leading numerics will be retained in the
(new) numeric field. If the original data had leading characters
instead of numerics, nothing would have been retained.

If you change a field name and a field length at the same
time, (either in the same or different fields), note that we will lose
the data for the field(s) with the name change! Since dBASE III
PLUS cannot handle this dual-change at the same time, make one
of the changes first (either one) and then make the other change
to modify the structure.

If you change the name of a field (only), and you want “o
save this new structure, 4BASE III PLUS will ask vou a qQuestion
"Should data pe COPIED from backup rfor all fieids?(Y/N)". What this
means is that, by default, when you change the name of a field,
you will lose all your data from all the records for the speciric

{leld, at the end 21 modification. 8y responding with 2 7 =0 "ls

question, you can retain all your data for all the records for that

field, at the end of name-change modification.
To modify the structure of the database you have created,
Just enter at the dBASE III PLUS dot prompt :

.USE CUSTOMER <cr>
.MODIFY STRUCTURE <Ccr> or
.MODI STRU <cr>

MODIFY COMMAND is dBASE III PLUS' text editor. It is crude
by text-editing standards, but it has one major advantage: it can
be accessed directly from dBASE III PLUS.

Part of dBASE III PLUS' appeal is that changes can be made
to a program very quickly. The MODIFY COMMAND allows
programmers to alter command files and test the changes In as
fast a way as possible. It is especially useful after a program is
written, when the program then needs to be debugged. During this
stage simple bugs, spelling mistakes, and syntax errors
predominate. These usually require only a little thought, and the
ability to get to a text editor quickly is extremely valuable.

Because it is a very simple text editor, the more a change
needs sophisticated editing, the less appealing MODIFY COMMAND
will be. If the programmer wishes to move commands from one
place to another, to copy groups of command, or to search the
command file, then MODIFY COMMAND is a poor tool.

The MODIFY COMMAND has about 20 commands. It uses
WordStar-like commands. There are two major problems with
MODIFY COMMAND (in addition to all the features :t lacks) First. 't
only allows command files of about 4,096 characters If
programmers go beyond this limit, then a message will be received
saying that data will be lost if they try to save the file Second, if
the user deletes a line or iIf a character is inserted into a large flle,
it takes an annoyingly long time to rewrite the screen.

87

e A AT O e T N A AN SN A N e N N T T

LA

&

¥ R LRI

AN N

By today's standards, the MODIFY COMMAND is crude, and
many find it a source of irritation. But as an old dBASE and CBASIC
programmer, the MODIFY COMMAND was revolutionary when it
first appeared. Prior to that, all programs had to exit from their
program (e.g.,Pascal), go to the Operating System, then to their
word processor, again to the Operating System, and then back to
the program. Each change in a program required the same lengthy
Jjourney. All this was obviated by the MODIFY COMMAND.

2. Modifving Functions in dBASE [I] PLUS Program

Here what we discuss is how to add or delete an application
to or from a database. There are tremendous benefits to be gained
by subdividing a problem into several command files. But there are
some differences between writing a single command file and
writing a project in several command files. These differences only
concern memory variables in dBASE IIl PLUS; they involve no
restrictions on data and index files.

The major benefit is that thinking can be organized by
breaking the Job into a series of tasks, each of which 1s performed
by a command file This makes development and testing easier,
and maxkes adding and deleting functions or applications easler
Provided that the task of dividing the main task into subtasks has
been properly thought through, the program will be more flexible
and changes wl. be easier 0 Impiement thar. if the entire tase
VAT TerIirihen LN ltrnmana e

Jnere s a conventon inat a commana iile tnat caus anotner
command file is at a higher level The command file that is called
1s at a lower level than the command file calling it dBASE 11l PLUS
can move LT r 1iwn the structure of ommand fiies, to nner or

lower level command files [t cannot move sideways.

88

‘‘‘‘‘‘‘‘‘‘‘‘‘

.y .

e

.- A -

SR ATRTETN

When a task is performed across a number of cornmand files,
dBASE [Il PLUS generally will perform more slowly than 1if all
commands were in one file. This {s because each command file has

HOLAN A

N to be opened by DOS when a DO (a command in dBASE 11l PLUS) s
i," performed and closed by DOS when a RETURN 1is performed The
:' time taken for this can be considerable. SET PROCEDURE will
¥ circumvent the opening and closing of files by DOS.

2 In the new program, we subdivided the old program into
Cd

Y

severel subprograms and tied up with the E-R diagram of the new

program in five levels (see Figure 5-2 and Figure 5-3), they are
y HANAOKA

SALE
NEW SALE CONTRACT
SALE INFORMATION INQUERY
NEW SALE SHIPMENT
SCOMPUTE
SALE INFORMATION INQUERY
LIST CUSTOMER
LIST ALL CONTRACTS OF ONE CUSTOMER
) LIST ONE CONTRACT INFORMATION
3 SALE LiST

e

> P

PURCHASE
NEW PURCHASE CONTRACT
SURCHASE 'NFARMATION INGUERY
NE'N PURCHASE ZHIPMENT
! PCOMPUTE
PURCHASE INFORMATION INQUERY
A PURCHASE LIST
DURCHASE SHIPMEN™ _.ST

The name at each line represents a command file. Totally

there are 19 command fles i1n the new program. All the command
files are independent of each other. One command file has one
function only, so it's easy for programmer to delete a command
flle if that function or application 1s no longer necessary. The
programmer can add a function or application to this program by
creating a commangd file for that function or application.

%%

o g

‘e %t

.......

VIl CONCLUSIONS

The increasing productivity of systems development, the
shortening of the response time of the computer, and the
increasing complexity of computer systems, requires effective tools
that will be capable of processing information Many changes have
occurred in the last five vyears. These changes are of two
fundamental types. First, people have learned how to better
manage and use database technology. Five years ago, companies
were still wrestling with databases. With no powerful database
language available, they used generic programming languages to
implement databases. To use generic programming languages to
sirnulate relational database model or for any Database
Management Systemn {s quite a heavy job. Some advantages of a
database must be sacrified due to the lack of database features.

In 1981, this situation changed. Some of the database languages,
based on the relational model, were announced as products. Early
relational products had unacceptable performance. In the last two
years, performance has been improved. Major manufacturing
organizations have tested relational DBMS products and have found
segments of their workload that can be processed with acceptable
performance. Using a relational DBMS, one company found
application development productivity improvements to be greater
than .00 to 1.

In this study, we examined two programs, one was written in
Pascal, and the other was written in dBASE IIl PLUS. We can
compare the lines of the source code of these two programs (see

Appendix A and B). The original program is quite a big program,
and due to the programming structure it is difficult to read. In the

P I

- | T v

new program, we see that its clear and it is well-sequenced so it is
easier to read.

In comparing their maintainability and modifiability, the new
program is much easy to maintain, and easy to modify.

92

. - .. . R R S U L I L P P T R I A T TR TR I T T S
.‘. .\\' v '.'q q_- - 1-1.' \f‘.v‘.‘\f\- RS \4“\- \-'\.\-\J‘,;{\-‘ _--_‘ -_-- \-'.'n_-\q RN I- “ 4" " L e e e

Wmm,-v v

- LY BN el " - l’ -
A RN N e

APPENDIX A |
THE ORIGINAL PROGRAM (WRITTEN IN APPLE PASCAL)

(*$S+*)
PROGRAM hanaoka,
CONST ok = true;

X =10,
max = 30; (* size of hash table *)
pmax = 30,

TYPE characters = string(80],

numbers = PACKED ARRAY (1. 13] OF integer,
menutype = PACKED ARRAY[0 .9] OF characters,
intype = PACKED ARRAY (0 20] OF characters,
datetype = PACKED RECORD

month,

day ,

year integer;

END;

statustype = (occupied, empty);
PACKED RECORD
month, wgt integer,
bal,unitprice ' real
end,

tostype

contype = PACKED RECORD
number string 12},

bales integer,
net : real {integer but larger than maxint}
END;

customtype = PACKED RECORD
name stringisi,
aqadr strng ot

contrne string ll), * thewr ontrac o e
END,
Ictype = PACKED RECORD
number string ‘2!
2Xpcate,

shipdate . datetype,
bal,amount . real

93

Al

g.‘f 7.'“.“‘ ’\' LN A LA 4 -’ CAGATS "~ CADRN

-
L)

ALY

R IR

Jhes

o e

XA

NN

N‘ ." q; (.' o

......
.........
- - « h

T S T T P P P I T T T W WO W RO PO IC P W VU WU P W WOV WL v W v o v, W, o v, vy ey v

END,

fsstype = PACKED RECORD
status = statustype,
number string(12],
contrdate . datetype,
customer : customtype;
commodity - string[50];
pricebase string(80];
Ic . Ilctype,
timeofship - ARRAY[1 .7] of tostype;
totaiship, balofship real,
Issuebank,drawbank string[30],
mitino string (18],
nofshipment,
shipmentinfo. integer;

(* ptr to *he shipments :nto %)
END,

shiptype = PACKED RECORD
status statustype,
invoiceno string(15],
name,origin,dest string[25],
etd, invoicedate datetype,
totalbales integer,
totainet reai,
container ARRAY(1 20] OF contype,
nofcont 0 20,
IInk integer,

END.

entry = PACKED RECCRD
status statustype,
number string[12].
name string (2%,
ommoedity strone ¢
Nk .nteger

eyl

IND

name string(2%;.
addr stringfso’
=NC

trucktype = PACKED RECORD

94

1
4
L
farmertype = PACKED RECORD 1
Ll
|
]
]

;-.\'\\

PRI ES

VAR

fsphashfile
{spshipflie
fspcontract
fspshiprecord
fssquerymenu, errori, error2, fssshpmenu,
sciname, fdstfmenu, fssmenu, fspmenu,
fspquervmenu. spshTmenu. (Sprewoonmenru menutvie
ssnewoonmenu
nreger
TEXT.
INTERACTIVE,
SETOF ¢ 9.
continue, quit
‘sshashfiie
fssshipfile

END;
{spshiptype = PACKED RECORD

mthday : string[é];
wgtticketno : string(12];
bales : integer;

net,cost . real,

END;

fsptype = PACKED RECORD

status : statustype,

number : string[12];

contrdate . datetype,

farmer : farmertype;

commodity : string[50];

timeofship : ARRAY([1..7] OF tostype,;
totalship, balofship : real,
nofshipment,

shipmentinfo . integer,

status : statustype,

truck ARRAY(1. 20] OF trucktype;
noftruck : 0..20;

totalbales ' integer,

totainet,

payment,

totaltruckcost - real,

link integer

END,

-
M.

FILE OF shiptype

FILE OF tsptype,

FILE OF entry,
FILE ’F ‘spsn.pivpe.

{sptype.
fspshiptype,

.".".'Dt"

boolear..

-

o0 T

- - iw *
-~

fsscontract, fssdummy . fsstype,
contractno : characters;
shpamtintons, rate : real,
tssshiprec . shiptype,

FUNCTION at(l,J:integer):char: FORWARD,;
FUNCTION password:boolean; FORWARD;

FUNCTION datecheck(date:datetype): boolean, FORWARD,
FUNCTION conint(line:characters): integer; FORWARD,;
FUNCTION conreal(line:characters):real, FORWARD;
FUNCTION validate(name:characters):boolean; FORWARD,;
PROCEDURE addcomma(VAR line:characters); FORWARD;
PROCEDURE dollarcent(num:real; VAR twodeci:characters),

FORWARD,

PROCEDURE prealtostr(num:real; VAR twodeci:characters);

FORWARD;
PROCEDURE skip(n:integer); FORWARD,

PROCEDURE dateconvert(line:characters; VAR date:datetype);

FORWARD;

PROCEDURE prompt(list: menutype;n:integer, VAR select:integer);

FORWARD,

(*$1 *5 fssi.text *)
(*$1 #5:1ss2.text *)
(*$1 #5.1ss2.5 text *)
(*$]1 #S 1ss3 text *)
(*$1 *5:tsp1.text *)
(*$1 *S fsp2 text *)

FUNCTION at,
3ESIN
GOTCXY (l,J),
at = chr(0)
ENC,

FUNCTIIN vasdare,

TAa - BN

2 T4 nteger kot JET OCF tnar
SR
T.AX C Ll name
n . : P r | (Al
okset - A . * _a P
vaildate - ‘aise.

FOR . - U 77 max W

RIS)

Rl

W

END;
validate .= true;
END;

FUNCTION conint;
VAR |, max, temp:integer; item:char;
BEGIN
max := LENGTH(line); | := 0, temp := 0;
REPEAT
i =1i+1,
item := line(i];
IF item IN digit
THEN temp := 10*temp+ord(item)-ord(‘0’)
UNTIL (item = '.') OR (i = max);
conint .= temp
END;

FUNCTION conreal;
VAR {,J,max : integer; temp : real; item : char;
BEGIN

i =1, temp .= 0; max := LENGTH(line);

line := CONCAT(line,' '); {append one blank so not to give the
value range error for no. with no dec pt}

WHILE (I <= max) AND (line[i] <> '.*) DO
BEGIN
item := line(i];
IF item IN digit
THEN temp := 10*temp+ord(item)-ord(’'0");
f:=1+1
END;
J =10, 1 =1+ 1,
(* convert the decimal places if any *)
WHILE (i <= max) DO
BEGIN
item := lineli];
'F (tem IN digit
"HEN ‘emp = ‘empo -
L* 0.

-
3

V]

]
END,
conreal = temp.

END. {®* ~orrea. *

oo

LI i o g)

LA S

£

N 273

F/G 12/3

T CHANG JUN 87

@
>
¥
~
=1
~
]
)
>
w
>
Ul
-
m
:
:
L
£
m

2
4
3
S
§
2
g
%
8

POSTGRADUATE SCHOOL NONTEREY CA

[-4

o

¥

EEEE,
E

E E

*EFEEEE

(42
13

&
.-~

o

[3
.

MICROCORY RFCN UTION TEST CHART

'\'\'. W
.) l b‘ 'u' \.l".‘ :.": !
" \".s , “ '° s’*,:""o

BEGIN L
FOR{:= 1 TO n DO X

writeln(out) b

END; o
PROCEDURE prealtostr; C
{to change pseudo-real (i.e. integer>maxint) to string} I
VAR number : ARRAY(0..9] OF string[1]; n
tento . ARRAY{0..5] OF real, - XN

i,J : integer,)
temp : real; X
BEGIN ‘
number [0] := '0';number(1] := '1';number[2] := '2'; N
number (3] := '3';number([4] := '4';number([5] := '5'; ' X
number (6] := '6¢';number([7] := '7';number(8] := '8';)
number(9] := '9'; 4
tento[0] := 1;tento[1] := 10;tento[2] := 100;tento(3] :=1000; /
tento{4] := 10000;tento[5] := 100000.0; 0
twodeci ;= ' ; X
FOR j := 5 DOWNTO 0 DO g
BEGIN K
temp := TRUNC(temp); ™
twodeci := CONCAT(twodeci, number|i}); .

num := num - tento[j]*t .

END; . :
{delete the leading zeroes} I
WHILE twodeci(t] = '0' DO &

DELETE(twodeci, 1,1);
END; {preaitostr} z

-

PROCEDURE dollarcent, p
VAR whole, dec:string[6]; ¢

number : ARRAY[0..9] OF string[1];
tento : ARRAY[0..5] OF real,

i, . integer; '
temp : real 3
negative: boolean; "
BEGIN
number (0] := '0';number}1] := '1';number(2] := '2"; R
number([3] := '3';number(4] := '4';number|[5) := '5'; \
number (6] := '¢’;number(7] := '7';number(8] := '8"; 3-
number({9] := '9'; A

tento[0] := 1; tento[1] := 10;tento[2] := 100;tento[3] := 1000;

R A T PR)

98

ST IRy VN ¥ - - W T A S DI S Rl - -'—..".." (A R S NSy -P" P _'. - -_'“-.'_. '.‘ A\.- RO -_’.. ‘-._' \'...'
a 4 o R L) . L 3 . ¥ 3 3 '\ 2 S al

.......

i
4y
tento(4] := 10000; tento[5] := 100000.0; 3
whole := ' '; dec ;="' "; ?::
..l
IFnum <0 .
THEN BEGIN
negative := true; 2
num := -1 * num; P
END 3
ELSE negative .= false; L
FOR j := 5 DOWNTO 0 DO .1’
BEGIN]
temp := num / tento(j]; :?'
i := TRUNC(temp); :
"~ whole := CONCAT(whole, number{i]); o
num := num - tento[j]*
END; N
{delete the leading zeroes} . o
WHILE whole[1] = ‘0’ DO \
DELETE(whole, 1,1); o
num := TRUNC(num * 100.0 + 0.5); ,
FOR j := 1 DOWNTO 0 DO -
BEGIN ;
temp := num/tento[j]; ‘
i := TRUNC(temp); -
dec := CONCAT(dec, number (i]); *
num := num - tento[j]*i; .
END; .
IF negative | 3
THEN twodec! := CONCAT(*-', whole, *.",dec) 2
-~ ELSE twodeci := CONCAT(whole,'.' dec) s
END; 7
04
PROCEDURE addcomma,; v
VAR 1 : integer; 1
BEGIN N
IF POS('.",line) = 0 N
THEN | := 2 .
ELSE i := §; .
WHILE i < LENGTH(line) - 1 DO r
BEGIN oy
INSERT(', ', line, LENGTH(line) - 1); 3
=1+ 4 N
END ~
END; i
T
N
)
99 X
— '....‘. \ N(\'(.‘ O ol : .“.""‘ '. l".-f~(- W, n f ‘ f WP ';.,. “d ."..'. ' "'.(‘. -\ 1*1 . ".\ \..

PROCEDURE dateconvert;
VAR temp:datetype; max,i.integer; item :char;
BEGIN
max := LENGTH(line);
temp.month := 0;temp.day := 0;temp.year := 0;
i:=1;
WHILE line[l] <> ‘/' DO
BEGIN
item := line(i];
temp.month := temp.month * 10 + ord(item) - ord('0');
=1+ 1;
END;
i:=i+13;
WHILE linefi] <> '/* DO
BEGIN
item.day := temp. day 10 + ord(item) - ord('0");
f:=1+13;
END;
=1+ 1;
WHILE { <= max DO
BEGIN
item := line[i];
temp.year := temnp.year * 10 + ord(item) - ord('0’);
{:=1+1;
END;
date := temp
END; (* dateconvert *)

FUNCTION datecheck;
BEGIN
IF (date.month < 1) OR (date.month > 12)
THEN datecheck := false
ELSE IF (date.day < 1) OR (date.day > 31)
THEN datecheck := false
ELSE IF (date.year < 60) OR (date.year > 99)
THEN datecheck := false
ELSE datecheck := true
END; (* datecheck *)

PROCEDURE prompt;
VAR ch:char; {:integer;
BEGIN
write(chr(12), at(15, 1), ltst[0]);
FORi:=1TOn DO
write(at(10,2*(1+1),1,'. ‘', Ust[t]);

write(at(10,2*(n+2)), ‘Selection Please:');
read(KEYBOARD, ch);

WHILE (ord(ch) < ord('1")) OR (ord(ch) > n + ord(’0')) DO

BEGIN (* range check for the selection input *)
write(at(10, 2*%(n+2), 'Invalid selection',chr(?),chr(?));
write(at(10,2*(n+3), 'Selection Please:');
read(KEYBOARD, ch)

END; (* WHILE *)

select .= ord(ch) - ord('0*) (* convert to integer *)

END; (* prompt *)

FUNCTION password,;
CONST valid = ‘hanaoka’;
VAR cnt: integer; secret : string[7];
BEGIN
cnt (= 0;
REPEAT
write(chr(12), chr(7), at(10,5), 'Password :');
readIn(KEYBOARD, secret);
cnt (= cnt + 1,
UNTIL (secret = valid) OR (cnt = 3);
IF secret <> valid
THEN password := false
ELSE password := true
END; (* password *)

PROCEDURE ftdstfpurchase;
VAR quit, successful : boolean;
choice : integer;
BEGIN
(*$1-*)
REPEAT
RESET(fsphashfile, '#5: fsphashtfile');
successful := (IORESULT=0);
[F NOT successful
THEN BEGIN
write(chr(12),chr(7), at(0,4), ' Wrong data diskette in
drive 2');
write(at(5,0), ‘put correct one and press <RETURN>');
readin
END
ELSE CLOSE(fsphashfile)
UNTIL successful;
(*$1+*)

101

(U P 0) "
OO T N I LN 100 S N\

quit := false;

REPEAT
prompt(fspmenu, 4, choice);
CASE choice OF
1 : fspnew;

2 . fspshipment;
3 : fspinquery;
4 . quit := true
END;
UNTIL quit
END; (* fdstfpurchase *)

PROCEDURE fdstfsales;
VAR quit, successful : boolean;
choice . integer;
BEGIN
(*$1-*)
REPEAT
RESET(fsshashfile, ‘#5:fsshashfile');
successful := (IORESULT=0);
IF NOT successful
THEN BEGIN
write(chr(12),chr(7),at(0,4), 'Wrong data diskette in
Drive 2');
write(at(0,5), 'put correct one and press <RETURN>');
readin
END
ELSE CLOSE(fsshashfile)
UNTIL successful;
(*$1+*)
quit .= false;
REPEAT
prompt(fssmenu, 4, choice);
CASE choice OF
1 : fssnew,
2 . fssshipment;
3 : fssinquery;
4 . quit := true
END;
UNTIL quit
END; {fdstfsales}

PROCEDURE initialize;

VAR i:integer;
BEGIN

102

. p g A AP BIR R D g R, p " T AT AT AR " m K" [T N P P L T P W AP TR X TR Ve
X L g "- S .‘l‘.,“l_ .,. l',.f (J..‘t . o' PP .J‘f .."".' o Ld s, \‘ o, " Cy X oy 2 ol o)

.........

quit := false;
digit := ['0°,'1",'2','3','4",'5",'¢",'7",'8",'9'];
RESET(menu, '*4: menu. text");
FOR{:=0TO 3 DO

readin(menu, fdstfmenu(i]);
FOR1{ :=0 TO 4 DO

readin(menu, fssmenu(i}]);
FOR { := 0 TO 15 DO

readln(menu, fssnewconmenu(i});
fspnewconmenu(1] := fssnewconmenu(i};
fspnewconmenu (2] := fssnewconmenu(2];
fspnewconmenu(5] := fssnewconmenulé}];
fspnewconmenu|é] := fssnewconmenu|8j;
fspnewconmenu(3] := 'Farmer name N

fspnewconmenu(4] := 'Farmer address N
FOR1{ :=0 TO 3 DO
BEGIN

readin(menu, errori(i));

error2(i] := errorili]
END,
error2[0] := '‘Error ! No such contract exists';
FOR1i:=0TOS5 DO

readin(menu, fssquerymenu(i]);
FOR { :=1TO 6 DO

readin(menu, fssshpmenu(i));
FOR { := 0 TO 3 DO

readin(menu, sciname({]);
FOR 1 :=0TO 4 DO

readin(menu, fspmenuli]);
FOR{ :=0 TOS DO

readin(menu, fspquerymenu(i]);
CLOSE(menu)

END; (* initialize *)

BEGIN (* main program *)
initialize;
IF password = ok (= password is the boolean function *)
THEN REPEAT
prompt(fdstfmenu, 3, choice),
CASE choice OF
1 : fdstfsales;
2 : fdstfpurchase;
3 . quit .= true
END
UNTIL quit

|

- -

- v -

ELSE write(at(30,25), chr(?7), 'Invalid password');

END.

SEGMENT PROCEDURE fssnew;

(* to add new feed stuff contract and setup the data structure

accordingly *)

VAR Iineno, J,Kk,loc,choice,addr,i ;. integer;
goon, finish, done, locate : boolean,
temp : characters; ch:char;
tempdate : datetype;

PROCEDURE tosconvert(line:characters; VAR tos: tostype);

CONST blank = ',
VAR temp : tostype;
i,J, max,start : integer;
item : characters;
BEGIN
line := CONCAT(line,'$');
max ;= LENGTH(line);
WITH temp DO
BEGIN

month := 0; wgt := 0; bal := 0; unitprice := 0

END,
i:=1, §:=1,
REPEAT

WHILE (line[t] = blank) AND (i < max) DO

1:=1+1,
item := COPY(line, start,i-start);
CASE § OF
1 . temp.month := conint(item);
2 . BEGIN
temp.wgt := conint(item);
temp.bal := temp.wgt
END;
3 : temp.unitprice := conreal(item)
END; (* case *)

Ji=d+1
UNTIL (§ > 3) OR (i = max);
tos := temp

END; (* tosconvert *)

PROCEDURE getfssinfo;

(* get all the information for the new contract *)

104

wmmm

- ey -

FUNCTION proceed : boolean; b
BEGIN y.
IF EOF THEN BEGIN RESET(INPUT); EXIT(fssnew) END 5
ELSE IF (lineno <> 8) AND (temp = ' ') ~'

THEN BEGIN -
proceed := false, 8
lineno := lineno - 1; N
END 5
ELSE IF (lineno = 8) AND (temp = ' *) '
THEN BEGIN
proceed := false;
Kk:=k-1 7
END 3
ELSE proceed := true; :
END; ;
PROCEDURE tosinfo;]
BEGIN
WITH fsscontract DO 3.
BEGIN
totaiship .= 0;
write(at(x,9),' 8. ', fssnewconmenu(8]);
finish := false; k := 0;
REPEAT
K:=k +1,
GOTOXY (x+33,9+k); readin(temp);
finish := (temp = 'F') OR (temp = 'f");)
IF (proceed) AND (NOT finish) 3
THEN BEGIN §
tosconvert(temp, timeofship(k]);
[F(timeotship(k]. month < 1) OR
(timeofship(k] . month > 12)
THEN BEGIN
write(at(x+30,9+K), ‘Error in input,
press <RETURN>"); S
readin, o
; write(at(x+30,9+k)," ':30); N
_ K:=KkK-1; :
! END
ELSE totalship := totalship + timeofship[k).wgt ;
END; ‘
UNTIL (k=6) OR (finish); r}
balofship := totaiship; \
) IF K < 6 THEN BEGIN {
write(at(x+30,9+k)," ':30); :
:
105 .

. ‘s W ¥, Y, s P P AR S P P B Ty T Vo Ca e € C L o " W n A e e RS N T AT
L N A o ey e kA e e e e N N N N i ; RN

timeofship{k].month := 0
(* 0 is endofdate marker *)
END
END
END;

PROCEDURE readnextinput;
BEGIN
WITH fsscontract DO
CASE lineno OF
1,3,4,5,6,7 :
BEGIN
write(at(x,lineno), lineno:2,'. ', fssnewconmenu|lineno]);
readin(temp);
IF proceed
THEN CASE lineno OF

1 . number .= temp;
3 : customer.name .= temp;
4 : customer.contrno := temp;
5 : customer.addr := temp;
6 . commodity := temp;
7 . pricebase := temp;
END; (* case *)
END;
2 : BEGIN
write(at(x,2),' 2. ',fssnewconmenu(2));
readin(temp);
IF proceed
THEN BEGIN
dateconvert(temp, contrdate);
IF datecheck(contrdate) <> ok
THEN BEGIN
write(at(38,2), 'Error in input,
press <RETURN>');
readln;
write(at(38,2),' ':30);
lineno := lineno - 1,
END
END
END;
8 . tosinfo;
10,11
BEGIN

write(at(x,lineno+k+1),lineno:2,"'. *

fssnewconmenu [lineno));
readin(temp);

IF proceed
THEN BEGIN
dateconvert(temp, tempdate);
IF datecheck(tempdate) <> ok
THEN BEGIN
write(at(38, line+k+1), ‘Error in input,
press <RETURN>');
readln,
write(at(38,line+k+1),' ':30);
lineno := lineno - {;
END
ELSE BEGIN
IF lineno = 10
THEN lc.expdate := tempdate
ELSE l¢c.shipdate := tempdate

END
END
END,
12 . BEGIN
write(at(x, lineno+k+1),lineno:2,". ', fssnewconmenu/[lineno});
readin(temp);

IF proceed THEN BEGIN
lc.amount := conreal(temp);
lc.bal := lc.amount
END;
END;
9,13,14,15 :
BEGIN
write(at(x, lineno+k+1),lineno:2,'. *,fssnewconmenulineno));
readin(temp);
IF proceed
THEN CASE lineno OF
9 . lc.number := temp;
13 . issuebank := temp;
14 : drawbank := temp;
15 : mitino = temp;
END
END
END (* case ®)
END; (* readnextinput *)

PROCEDURE fssmodify;
(* to modify the fsscontract input information *)

o

R NS A,

.
vEEAwe

AN AR T4 4 % KA]

-

Y

B Y Y Y Y YTy

............

BEGIN
REPEAT
REPEAT
goon := true,
write(at(55,22), 'Which line to change:');
readin(lineno); write(at(55,22),' ':24);
IF (ineno < 1) CR (lineno > 15)
THEN BEGIN
write (at(55,22),chr(7),'No such line!Press <RET>');
readin;
write(at(55,22),' *:25);
goon := false
END
UNTIL goon;
(* now erase the line to be changed *)
IF lineno <= 6
THEN BEGIN
write(at(38,lineno), ' ':40);
GOTOXY (38, lineno)
END _
ELSE IF lineno = 7
THEN BEGIN
write(at(38,lineno),’ ':80);
GOTOXY (38, lineno)
END
ELSE IF lineno = 8
THEN FOR jJ :=1 TO k DO
write(at(43,9+4),' ':20)
(* no GOTOXY here since it is in PROC seven *)
ELSE BEGIN
write(at(38,lineno+k+1),' ':40);
GOTOXY (38, lineno+k+1)
END;
readnextinput;
write(at(s5,22), 'Ok now?(y/n)");
read(ch);
UNTIL (ch = 'Y’) OR (ch = 'y*)
END; (* fssmodify *)

BEGIN
write(chr(12),at(15,0), fssnewconmenu[0]);
lineno := 1,
REPEAT
readnextinput,

108

L R ‘.., I.‘I'f‘f‘f’-"’.‘f.;"f’-'.- -:'_. - .; .y -

N W)

of L

lineno := lineno + 1;
UNTIL lineno > 15;
fsscontract.nofshipment := 0; fsscontract.status := occupied,
write(at(55,22), 'Input OK?(y/n)');
, read(ch); IF (ch = 'N') OR (ch = ‘n') THEN fssmodify
a4 END; (* getfssinfo *)

BEGIN (* fssnew *)
o getfssinfo; (*input all pertinent new sales contract info *)

:, (* go thru the file and make sure that the given contract * is

R not already in the file *)

¢ RESET(fsshashfile, '#5: fsshashfile');

- REPEAT '

" done := true;

o {:=-1;

’ REPEAT

, i:=1+1;

u SEEK (fsshashtile, {);

. GET(fsshashfile)

i UNTIL (EOF(fsshashfile)) OR

I (fsshashfile*. number = fsscontract.number);

g IF fsshashfile*.number = fsscontract.number

! THEN REPEAT (* error! same contract already in table *)

. prompt(errori, 3, choice);

< CASE choice OF

" 1 : BEGIN CLOSE(fsshashfile); EXIT(fssnew) END;

, 2 : BEGIN CLOSE(fsshashfile);fssinquery END;

’ 3 . BEGIN

. REPEAT

M write(chr(12), at(x,3), 'Contract number

: (<ctri-c> to quit):");
readin(fsscontract.number);

'3 UNTIL (fsscontract.number <> ' ') OR EOF;

" done := false;

[/ [F EOF THEN BEGIN

8 CLOSE(fsshashtfile);

; RESET(INPUT);

i EXIT(fssnew)

F END

v END;

p END; (* case *)

UNTIL choice = 3

(* no error so put into the fssfile and fsshashfile *)
ELSE BEGIN

B

(= place the new sales contract info into the fssfile;
place at the first open siot *)
RESET(fsstile, '#5: fssfile’);
(* put the contract info into the first open slot *)
loc := -1,
REPEAT
loc := loc + 1;
SEEK (sstile, 1oc); :
GET(fsstile);)
UNTIL (fssfile*.status = empty) OR (EOF(fssfile));
IF EOF(fssfile)
THEN BEGIN
write(chr(12), at(x,3), 'DOOMESDAY!No more space',
‘ to add new contract');
write(at(x, 4), 'Must use new diskette. Press<RET>');
readln; CLOSE(fssfile); EXIT(fssnew)
END;
fssfile® .= fsscontract,
SEEK (fssfile, loc);
PUT(fssfile); CLOSE(fssfile);
write(at(0,22),'loc = ',loc);

P e

(* find open slot in fsshashfile *)
RESET(fsshashtfile);
{:=-1,
REPEAT
f:=1+1;
SEEK (fsshashfile, 1);
GET(fsshashfile);
UNTIL fsshashfile®.status = empty;

(* put in the information *)
WITH fsshashfile® DO
BEGIN

status := occupled,;

number .= fsscontract.number,

name := fsscontract.customer.name,

link := loc;

commodity = fsscontract.commodity
END,
SEEK (fsshashtfile, 1); T
PUT(fsshashtile); p
CLOSE(fsshashfile) "
END B

UNTIL done

110 -

R T P T R R, L _- T AN s e T e AT e e
p_* rf.l‘f.{.&(,.g.utgmw . kot £ 4 X o I PP N W NN

END; (* fssnew *)

E SEGMENT PROCEDURE fssshipment;
: VAR choice,loc,sfloc,i,J,m,o0ld : integer;
done, bankpay, lastship : boolean;

N inp : string[10];

R bankpayamt : real,
y ch : char;

X PROCEDURE computepart;
BEGIN

& WITH fsscontract DO

:: BEGIN

i:=1; (8 find out which months *)

" write(chr(12),at(18,0), 'month eprice’);

> REPEAT

write(at(20,1), timeofship[i] .month:2, s,
timeofship(t] . unitprice:7:2);

IF timeofship[i].month = fssshiprec.invoicedate. month

" THEN BEGIN
A m =i
~ rate := timeofship(i].unitprice
" END;
> i;=1+1;
. UNTIL (1 > 6) OR (timeofship[i].month = 0);
by
:3. write(at(20,1+2), 'Compute the price with the above rate?(y/n)");
> read(ch);
y IF ch IN ['N','n']
THEN REPEAT
" write(at(20,10), 'Rate = *);
. readin(inp);IF inp <> ' ' THEN rate := conreal(inp)
X UNTIL inp <> ' '
. ELSEIFi> 6
- THEN REPEAT
o write(at(30,i+3), 'But you must give me the rate’);
R write(at(20,10), 'Rate = ');
" readin(inp);IF inp <> ' ' THEN rate := conreal(inp)
L) UNTIL inp <> ' '}
W shpamtintons := fssshiprec.totalnet / 2000;
-3 timeofship[m].bal := timeofship{m].bal - shpamtintons;
Z: . balofship := balofship - shpamtintons;

IF (timeofship[m].bal < 0) AND (timeofship[m+1]).month <>0)
THEN timeofship[m+1)].bal := timeofship[m+1].bal

awmmm-r;c.‘x;.mm;-: AN

s

BEGIN (* fssshipment *)

+ timeofship[m].bal;
IF balofship < 0
THEN lastship := true;
Ic.bal := Ic.bal - shpamtintons * rate,
IF lc.bal < 0
THEN BEGIN
bankpay := true;
bankpayamt .= -)c.bal
END,
IF nofshipment <> 0
THEN BEGIN (* more than one shipments so *)
i := 0;j := shipmentinfo; (* link up the shipment records*)
RESET(fssshipfile, '#5: fssshipfile');
REPEAT
SEEK (fssshipfile, J); old := J;
GET(fssshipfile);
J := tssshipfile”. liink,
i:=1+1;
UNTIL 1 = nofshipment,
fssshipfile”.link := sfloc;
SEEK (tssshipfile, old); PUT(fssshipfile);
CLOSE(fssshipfile); (* put back into the original place *)
END
ELSE shipmentinfo := sfloc; (* first shipment *)
nofshipment := nofshipment + 1,

END; (* with *)
END; (* computepart *)

RESET(fsshashtfile, '#5: fsshashtfile');
REPEAT (* till the correct contract no given *)
done .= true,
REPEAT
write(chr(12), at(x, 3), ‘Contract number: *);
readin(contractno)
UNTIL (contractno <> ' ') OR EOF;
IF EOF THEN BEGIN RESET(INPUT);
CLOSE(tsshashfile); EXIT(fssshipment) END;
= -1,
REPEAT
=1 +1;
SEEK(fsshashfile, 1);
GET(fsshashfile)
UNTIL (EOF(fsshashfile) OR (fsshashfile”.number = contractno);
IF EOF(fsshashfile)

THEN REPEAT

prompt(error2, 3, choice);

CASE choice OF

1 : BEGIN CLOSE(fsshashtile); EXIT(fssshipment) END;

2 : BEGIN CLOSE(fsshashfile); fssinquery END;

3 . done := false
t END;
| UNTIL choice = 3

. ELSE BEGIN (* ok find the contract info from fsstile *)

_ loc := fsshashfile*.link; CLOSE(fsshashfile);
RESET(fssfile, '#5: tssfile');

‘; SEEK (tssfile, loc);

4 GET(fssfile); fsscontract := fssfile®;
; CLOSE(fssfile)

. : END;

N UNTIL done;

K)

)

N getshipinfo;

" (* put this info into the fssshipfile *)

bankpay := false; lastship := false;

. RESET(fssshipfile, '*S.: fssshipftile'); sfloc := -1;

:: REPEAT

y sfloc := sfloc + 1;

' SEEK(tssshiptile, sfloc);

N GET(fssshipfile)

. UNTIL (EOF(tssshipﬁle)) OR (fssshipﬁle .status = empty);
write(at(0,22), 'sfloc = ', sfloc);

IF EOF(tssshipfile)

‘ THEN BEGIN

\ CLOSE(fssshipfile);

4 write(chr(12), chr(7), at(x,2),

5 '‘DOOMESDAY no more space in the file');

" write(at(x,3), 'Please call the system designer');
- write(at(x, 4), 'Meantime press <RETURN> and
4 do other work');

. readin; EXIT(fssshipment)

“ END,;

ol fssshipfile” .= fssshiprec;

, SEEK (fssshipfile, sfloc);

X PUT(fssshipfile); CLOSE(fssshipfile);

(* make the necessary computation and save it *)
3 computepart;
(* now put it into the fssfile *)

13

S S I S SN P i X AR
1] .. e N =

u'l’-"‘a‘\‘.‘il“l\"‘lt Y

RESET(fssfile, '#S: fssfile');
fssfile® := fsscontract;

SEEK (fssfile, loc); PUT(fssfile);
CLOSE(fsstile);

shippaperwork
END; (* fssshipment *)
SEGMENT PROCEDURE listtoscreen,;
VAR k : integer; twodeci . characters;

PROCEDURE listtop; (* half of contract information *)
BEGIN
WITH fsscontract DO
BEGIN
write(chr(12),at(15,0), 'Feed Stuff Sales Contract Information');
write(at(x, 1), 1ssnewconmenu(1],’ ', number);
write(at(x,2), fssnewconmenu(2],' ', contrdate. month, '/,
contrdate.day,'/', contrdate. year);
write(at(x, 3), fssnewconmenu(3],* ‘,customer.name);
write(at(x, 4), fssnewconmenu (4], ', customer.contrno);
write(at(x,5), fssnewconmenu(5],' ', customer.addr);
write(at(x, 6), fssnewconmenu(6],' ',commodity);
write(at(x,7), fssnewconmenu(7],* ', pricebase);
END;
END; (* listtop *)

PROCEDURE listbottom,;
(* bottom half of fsscontract info *)
BEGIN
WITH fsscontract DO
BEGIN
kK :=1,
write(at(x,9),
‘Time of shipment : Months Quantity Balance Unitprice');
REPEAT
write(at(29+x, 9+x), timeofship[k] . month: 2, timeofship (k] . wat: 10,
timeofship(k].bal:12:2,* §',timeofship(k].unitprice:8:2);

k : =k+1
UNTIL (timeofship{k].month = 0) OR (k > 6);
write(at(x, 9+k), 'total shipment . ',totalship:8:2);

write(at(x, 10+k), 'balance of shipment : ' balofship:8:2);

write(at(0,22), 'Press <RETURN>'); readin;

write(at(x,2), fssnewconmenu(10],’ ',lc.expdate. month, /',
lc.expdate.day, '/, Ic. expdate. year);

write(at(x, 3), fssnewconmenu(11],* ‘,1c.shipdate. month, '/,

114

e MG SE RN '. A RN P ,‘,‘,-'.-'.- o el T A L GOSN

\"::
n::'
!
lc.shipdate.day, '/, 1c. shipdate. year);]
dollarcent(lc. amount, twodeci); addcomma(twodeci); e
write(at(x, 4), fssnewconmenu(12],' $', twodect: 10); 2
dollarcent(ic. bal, twodect); addcomma(twodeci); 2
write(at(x,5), 'L/C balance : $',twodect: 10); 3
write(at(x, 6), fssnewconmenu[13), {ssuebank); Ly
write(at(x,7), fssnewconmenu[14],drawbank); '&
write(at(x, 8),faanewconmenu[15],' ', mitino); R
write(at(x,9),'® of shipment made : ‘,nofshipment); v
END; (* with ®) e
END; (* listbottom *) 33
l\
BEGIN {listtoscreen} '::
listtop, =X
listbottom i
END; 2
r
SEGMENT PROCEDURE listtoprinter; i
VAR i,k : integer; stri,str2,twodecti : characters; §
f\
PROCEDURE prlisttop; (* half of contract info to printer *) &
BEGIN ’
WITH fsscontract DO ¢
BEGIN -
skip(4); !
writ(el)n(out,' *:20, 'Feed Stuff Sales Contract Information'); :
skip(3); ‘
writeln(out,' ':10,fssnewconmenu(i],' ',number); writeln(out); g
writeln(out,’ ':10,fssnewconmenu(2],' ', contrdate. month, /", 3
contrdate.day, '/, contrdate. year); writein(out); =
writeln(out,' ':10,fssnewconmenu(3],' ', customer.name); 2
writeln(out); o
writeln(out,’ ':10, fssnewconmenu(4],' ', customer.contrno); !
writeln(out);
writeln(out,' ':10, fssnewconmenu(5],' ', customer.addr);
writeln(out);
writeln(out,' ':10, fssnewconmenu(6},"' ', commodity);
writeln(out);

IF LENGTH(pricebase) < 41
THEN writeln(out,' ':10, fssnewconmenu(7],' ', pricebase)
ELSE BEGIN
.= 41,
REPEAT
f:=1-1

N W A AR, T

Lo

URERE RS M NAATHITTRN XXX & ‘4 AR AN AN AR AN AN RN E N ANR W R

UNTIL pricebase(i] = ' *;
stri := COPY(pricebase, 1,i-1);
str2 := COPY(pricebase,i+1, LENGTH(pricebase)-1);
writeln(out, ' ':10, fssnewconmenu(7]},' ', str1);
writeln(out,' *':35,str2)
END;
END;
END; (* prlisttop *)

PROCEDURE prlistbottom;
(* bottom half of fsscontract info to the printer *)
BEGIN
WITH fsscontract DO
BEGIN
skip(2); k := 1,
writeln(out,® *:10,
'Time of shipment : Months Quantity Balance Unitprice’);
REPEAT
writeln(out, ' ':39, timeofship{k] . month:2, timeofship(k]. wgt: 10,
timeofship(k].bal:12:2,' $', timsofship[k].unitprice:8:2);

K:=k+1;
UNTIL (timeofship[k].month = 0) OR (k > 6); skip(2);
writeln(out, ' *:10, 'total shipment : ', totalship:8:2);
writeln(out);
writein(out,' ':10,'balance of shipment : ', balofship:8:2);
writeln(out);

writeln(out,’ ':10,fssnewconmenu(9],' ‘,1c.number); writein(out);

writeln(out, ' ':10, fssnewconmenu(10],' ',1c.expdate. month, '/,
Ic.expdate.day, '/, 1c.expdate. year); writeln(out);

writeln(out, ' ':10,fssnewconmenu[11],' ‘,lc.shipdate.month,'/’,
lc.shipdate.day, '/',1c. shipdate. year); writeln(out);

dollarcent(ic. amount, twodect); addcomma(twodect);

writeln(out, ' ':10,fssnewconmenu[12],' $', twodeci:10);

writeln(out);

dollarcent(lc. bal, twodeci); addcomma(twodeci);
writeln(out,' *:10,'L/C balance :$ *, twodeci: 10);
writein(out);

writein(out,' ':10, fssnewconmenu(13],' ',issuebank); writein(out);
writeln(out,’ *:10, fssnewconmenu(14)],' ',drawbank); writein(out);
writeln(out,' ':10, fssnewconmenu[15],' ', mitino); writeln(out);
writeln(out,’ ':10,'* of shipment made : ',nofshipment);
END; (* with ®)
END; (* prlistbottom *) :

BEGIN {listtoprinter}

priisttop; "

prlistbottom ¢
END; ';
SEGMENT PROCEDURE fssresiduecheck; >
VAR Jj,opencnt : integer; y
BEGIN ' o

write(chr(12), at(x, 2), 'Available Space'); opencnt := 0; N

J := 0; RESET(fsstile, '#5:fssfile');)

SEEX (fsstile); :

GET(tsstile); N

write(at(x, 4), ‘Contract file: *); t

WHILE NOT EOF(fsstile) DO B

BEGIN

IF tssfile”.status = empty
THEN BEGIN

opencnt .= opencnt + 1;
write(at(x+19, 4), opencnt:3)
END;
Ji=J+1
SEEK (fssfile, J); :
GET(fssfile) o
END; ;
CLOSE(fsstile);
opencnt :=0; § := 0,
write(at(x,5), 'Shipment file: ');
RESET(fssshipfile, ‘#5: fssshipfile');
SEEK (fssshipfile, j); GET(fssshipfile);
WHILE NOT EOF(fssshipfile) DO
BEGIN
IF tssshipfile” status = empty
THEN BEGIN
opencnt .= opencnt + 1,
write(at(x+19,5),opencnt:3)
END;
Ji=l+1
SEEK (fssshipfile, J);
GET(fssshipfile)
END;
CLOSE(fssshipfile);
write(at(0,7), 'Press <RETURN>'); readln
END; {tssresiduecheck}

“»
-

"4 N

SEGMENT PROCEDURE fssinquery;

VAR {, J,k,num, entries, loc : integer;
compname : string{25];
quit : boolean;
customilist ;. intype, ch . char; twodeci,stri,str2:characters,

PROCEDURE listship,
VAR sumbales, sumnet ; real;
BEGIN
WITH fssshiprec DO
BEGIN
write(chr(12),at(0,0), ‘Shipname : ',name);
write(at(38,0), 'Inv date:’,invoicedate. month, '/,
invoicedate.day,'/', invoicedate. year),
write(at(60,0),'etd: ', etd. month,'/’,etd.day, /', etd. year);
write(at(0,1), ‘origin port:',origin);
write(at(38,1), 'destination port:‘,dest);
write(at(18,2), ‘Container®, at(33,2), 'Bales’, at(41, 2), 'Net wgt");
sumbales .= 0; sumnet := 0,
FOR k := 1 TO nofcont DO
WITH container (k] DO

BEGIN
sumbales := sumbales + bales;
sumnet .= sumnet + net;

prealtostr(net, twodect); addcomma(twodeci0;
write(at(18,3+k), number, at(31, 3+k), bales:5, at(40, 3+k),
twodect:7)
END;

prealtostr(sumbales, str1); addcomma(stri);
prealtostr(sumnet, str2); addcomma(str2);
writeln(at(31, nofcont+4), '----- ', at(40, nofcont+4), '-—----- Y
writeln(at(26, nofcont+5), stri:10, str2:11);
END
END;

PROCEDURE prlistship;

VAR sumbales, sumnet = real,

BEGIN

WITH f{ssshiprec DO

BEGIN
write(at(0,20),' ':70);
write(at(0,22), 'Need a printout?(y/n)');
read(ch); !F SOF THEN BEGIN RESET(INPUT),EXIT(prlistship) END;
IFch IN ['Y','yv]

THEN BEGIN

write(at(0,22), 'Turn on the TEC and press <RETURN>');
readin;

REWRITE(out, 'PRINTER: '); skip(4);

writeln(out,’ Shipment No.',num,

' Invoice No.',fssshiprec.invoiceno); writein(out);
writeln(out,’ shipname: ‘,name);skip(2);
writein(out,’ invoice date: ',invoicedate. month,'/’,

invoicedate.day, /', Invoicedate. year); writeln(out);
writeln(out,’ etd :',etd.month,'/' etd.day,"/",
etd. year); skip(3);
writeln(out,' ':18,Container #,' '.5, 'Bales’,' ':5,
'‘Net wgt'); skip(2);
sumbales := 0; sumnet .= 0;
FOR k := 1 TO nofcont DO
WITH container (k] DO
BEGIN
sumbales := sumbales + bales;
sumnet := sumnet + net,
prealtostr(net, twodeci); addcomma(twodecti);
writeln(out,' ':18,number:12,' ':5,bales:5," ':5,
twodect:7);
writein(out);
END;
prealtostr(sumbaies, str1); addcomma(stri);
prealtostr(sumnet,str2); addcomma(str2);

writeln(out,’ *:35, '-~——- t VB, e 9;
writeln(out,' *:30,str1:10,str2:12);
CLOSE(out)
END

END; (* with *)

PROCEDURE onecontrinfo;
PROCEDURE case3sub;

write(at(0,22), '‘Need a printout?(y/n)');read(ch);
IF EOF THEN BEGIN RESET(INPUT);EXIT(case3sub) END;
IF ch IN ['Y",'y']

THEN BEGIN

write(at(0,22), 'Turn on the TEC and press <RETURN>');
readiln; REWRITE(out, 'printer:');

listtoprinter; CLOSE (out)

END;

IF fsscontract.nofshipment > 0 THEN

Ny
-~
o

A

L)

»

X T 'p".f’l

oK

i "a Y Q1 € v
Ay ..‘l:‘ [A A

& VLY

4

01]

BEGIN
write(at(0,22),

'Like to see all shipments in sequence?(y/n/<ctrl-c> to quit)');
read(ch);IF EOF THEN BEGIN RESET(INPUT); EXIT(case3sub) END;
IF ch IN ['Y','y']

THEN BEGIN
i :=0; J := fsscontract.shipmentinfo;
RESET(fssshipfile, '*5: fssshipfile');
REPEAT
SEEK(fssshipfile);
GET(fssshipfile);
:= fssshipfile“.link; { :=1{ + 1, num := i,
fssshiprec := fssshipfile*;
listship, prlistship,
IF { < fsscontract.nofshipment
THEN BEGIN
write(at(0, 22),
'Want to see next shipment?(y/n) ');
read(ch); write(at(0,22),' ':50);
IF EOF THEN BEGIN CLOSE(fssshipfile);
RESET(INPUT); EXIT(case3sub) END

END
UNTIL (i = fsscontract.nofshipment) OR (ch IN
['N','n']);
CLOSE(fssshipfile);
END
ELSE BEGIN
REPEAT
write(at(0,22),' ":50); (* erase previous line *)
REPEAT

write(at(0,22), 'Which shipment(<ctrl-c> to quit):");
readin(num); IF EOF THEN BEGIN RESET(INPUT);
EXIT(case3sub) END
UNTIL (num >= 1) AND
(numc<=fsscontract. nofshiopment);

(* locate the shipment info *)
i :=0; J := fsscontract.shipmentinfo,
RESET(fssshipfile, '*5.: fssshipfile');
REPEAT

SEEK(fssshipfile, J);

GET(fssshipfile);

J := fssshipfile*.link; { ;=1 + 1;
UNTIL | = num;
fssshiprec := fssshipfile®; CLOSE(fssshipfile);
listship; prlistship;

120

™ NI TG B T e T S e A S A S e T S S TR AR T AT N AT AT
“-kl..v'.‘\. ~. I.I..' " M) ". ‘ N a VIR LA o e

e

."..'- .

write(at(0,22), 'Like to see another shipment?(y/n)"); .
read(ch); IF EOF THEN BEGIN RESET(INPUT); 3
EXIT(case3sub) END N
UNTIL ch IN ['N’','n'] A
END (* else *)
END
END; (* case3sub *)

BEGIN (* onecontrinfo *) o
REPEAT
write(chr(12),at(x,3), ‘Contract number:*); ‘
readln(contractno); Y
UNTIL (contractno <> ' ') OR EOF; (* not empty or terminate *) X
IF EOF THEN BEGIN RESET(INPUT); EXIT(fssinquery) END; 2
RESET(fsshashfile, '#5:fsshashfile’); i := -1, %
REPEAT
=1+
SEEK (fsshashfile, 1);
GET (fsshashtfile)
UNTIL (EOF(fsshashfile)) OR (fsshashfile*.number=contractno);
IF EOF(fsshashfile) (* not found *)
THEN BEGIN
CLOSE(fsshashtile);
write(at(x,5),chr(7), 'No such contract in the ftile');
write(at(x,7), 'Press <RETURN>'); readln;
END
ELSE BEGIN
CLOSE(fsshashfile);
loc := fsshashfile“.link; !
RESET(fssfile, '#5: fssfile');
SEEK (fsstile, loc); GET(fssfile); CLOSE(fssfile); .
fsscontract = fssfile*;
listtoscreen,
case3sub bel
END; -
END;

BEGIN (* fssinquery *)
quit .= false;
REPEAT
prompt(fssquerymenu,5, choice);
CASE choice OF
1 : BEGIN
RESET(fsshashfile, '*S: tsshashfile’);
write(chr(12),at(15,0), 'List of all customer');

XA,

121

----------------- PR T I I T I R WL I P I I IR D
G .PJ_',_;(‘ T _:.f._ .. .- C X e N 4-: T .a G (_‘.. _..'_./-..(5 .-_

Rt

: BEGIN

entries := 1, customlist[1] := ', § := -1,
REPEAT
REPEAT
Ji=J+1
SEEK(fsshashtfile, J);
GET(tsshashfile)
UNTIL(EOF(fsshashfile)) OR
(tsshashfile*.status <> empty);
IF NOT EOF(fsshashfile)
THEN BEGIN
{1 :=1,
(* check if this record's name is aiready in
customers array, if not put it *)
while (i<entries) AND (fsshashfile*.name
<> customlist(i]) DO
=1+ 1,
IF { = entries
(* not in customers array so put it in *)
THEN BEGIN
customlist(i] := fsshashfile*. name;
entries := entries + 1
END;
END
UNTIL EOF(fsshashfile);
CLOSE(fsshashfile); { := 1;
WHILE { <= entries - 1 DO
BEGIN
IF validate(customilist[t])
THEN write(at(x,1), customlist[i]);
=1+1
END;
write(at(55,22), 'Press <RETURN>'); readin
END;

REPEAT
write(chr(12), at(x,3), 'Company name:');
readin(compname)

UNTIL (compname <> ' ') OR EOF;

(*not empty or terminate *)

IF EOF THEN BEGIN RESET(INPUT);EXIT(!ssmquery)

END;

RESET (fsshashfile, '#5: fsshashfile');

write(chr(12), at(15,0), 'Contract with ', compname);

J =2

FOR { := 0 TO max DO

BEGIN

SEEK (fsshashtfile, 1);

GET(fsshashfile);

IF (fsshashfile*.name = occupled)

AND (fsshashfile*.name = compname)
THEN BEGIN
write(at(x, j), fsshashfile*. number,’
fsshashfile*.commodity);

Ji=J+1
END;
IF §J = 22 (* full screen *)
THEN BEGIN

write(at(65, 22), 'Press <RETURN>');
readin; write(chr(12)); § := 2
END;
END;
write(at(55,22), 'Press <RETURN>');readln;
CLOSE(fsshashfile)
END;
3 . onecontrinfo;
4 . fssresiduecheck;
5 : quit := true;
END; (* case *)
UNTIL quit
END;

SEGMENT PROCEDURE getshipinfo;
VAR Kk, lineno, xaxis : integer;
ch : char;
finish,goon : boolean,;
temp : characters;
tempdate . datetype,

PROCEDURE contconvert(line:characters; VAR cont:contype);
CONST blank = ' ';
VAR temp : contype;

1,J, max,start . integer;

gross, tare . real,

item : characters;

BEGIN
line := CONCAT(line,'$");
WITH temp DO
BEGIN
number := blank; net := 0; bales .= 0,
END;

i -

ot ’Ill-“‘.‘

X, IR

“e >
SIS o

. an e o)

T g Nt e g g gat gt A a0 2 8 £ A% ' 82 £%a ke A% Ao Ata At a2l %2l st 2l "ad "2l 2t ‘al.tad’ DO TNy

temp.number := COPY(iine,1,12);

DELETE(line, 1,12);
{ :=1; j := 1, max := LENGTH(line);
REPEAT
WHILE (line[i] = blank) AND (i<max) DO
i:=1+1;
start .= {;
WHILE (linefi] <> blank) AND (I < max) DO
f:=1+1;
item := COPY(line, start,i-start);
CASE j OF
1 : temp.bales := conint(item);
2 : gross := conreal(item);
3 . BEGIN .

tare := conreal(item);
temp.net .= gross -~ tare
END
END; (* case *)
=J+1
UNTIL (§ > 3) OR (I = max);
cont := temp

END;
FUNCTION sproceed : boolean,
BEGIN
IF EOF THEN BEGIN RESET(INPUT); EXIT(getshipinfo) END
ELSE IF temp = '’
THEN BEGIN

sproceed .= false,
lineno := lineno -1
END
ELSE sproceed := true
END;

PROCEDURE nextshipinput;
BEGIN
WITH fssshiprec DO
BEGIN
CASE lineno OF
1 . BEGIN
write(at(0,0),'1.", tssshpmenu[1));
readin(temp);
I[F sproceed THEN name := temp
END;
2,3 : BEGIN

-JI\-".IA-IJ'JV'

1 N FRY ANRNAR T RN AN AR AR W a0 0, Wy Ba 12t avp J0a ary ¥ 8.8 ER AR KA TR A ROATRY Vgt BV B2 d'ad'2.0'ad o I YYrYY DCYURTH

ey,

| IF lineno = 2 THEN xaxis := 38 ELSE xaxis := 60;
write(at(xaxis, 0),lineno, '.', fssshpmenu [lineno]);

readin(temp); .
IF sproceed
THEN BEGIN ,
dateconvert(temp, tempdate); :
IF datecheck(tempdate) <> ok N
THEN BEGIN » v
write(at(xaxis, 0), 'Error, press <RETURN>');
readin;

write(at(xaxis,9),' ':20);
lineno := lineno ~ 1
END
ELSE IF lineno = 2
THEN invoicedate := tempdate :
ELSE etd .= tempdate N
END
END;
4,5 : BEGIN
IF lineno = 4 THEN xaxis := 0 ELSE xaxis := 38;
write(at(xaxis, 1), lineno, ‘., fssshomenulineno});

readin(temp); N
IF sproceed y
THEN IF lineno = 4
THEN origin := temp
ELSE dest := temp R
END; 4
END; (* case *))
IF (lineno >= 6) 4
THEN BEGIN by
write(at(0,2),’ ', fssshpmenu(6]); Ry
write(at(14, lineno-3),lineno:2,". *); 5
readin(temp);
finish := (temp = 'F') OR (temp = ‘'1');
IF (sproceed) AND (NOT finish) ;
THEN BEGIN 5
contconvert(temp, container {lineno-5]); '
write(at(56, lineno-3), container (lineno-5] . net:8:1); :
totalbales := totalbales+container{lineno-5].bales; N
totalnet := totalnet+container{lineno-5].net; X
IF lineno-5 > nofcont THEN nofcont := lineno-5 N
{necessary not to reset nofcont when called from N
shipmodify} N
END; :
IF finish
%)
“
.
125 _
.

AP P > 3% T TS R PRSIV w v ‘q.’.‘\'c 1% I R - “\1'_1.,‘1 .- - -J'- L) ..-‘.I 5
ol‘ o. —‘* Ve, Vety] W ")."‘.“b" W -fJ‘ .. "ﬂ*

s an aw ol g3

" \. TS . “.\. \;5 " -'-. - ﬁ'\" _‘- ‘\n N - - \ ‘n - [SR W ,‘--._« ~ “-.‘:‘..---‘- LIRS !.-‘- ._\-._'.._". - {'.(-.".('\'\-'
. N A n .9, .. ~ A 4

THEN write(at(14,lineno-3)," ':60)
END {if}
END {with}
END; (* nextshipinput *)

PROCEDURE shipmodity;

BEGIN
REPEAT
REPEAT
goon := true;
write(at(55,22), ‘Which line to change:');
readin(lineno); write(at(s5,22)," ':24);.
IF (lineno < 1) OR (lineno > fssshiprec.nofcont + 5)
THEN BEGIN
write(at(55,22),chr(7), 'No such line,
press <RETURN>');
readin; write(at(55,22),"' ':25); goon := false
END
UNTIL goon;
(* now erase the line to be changed *)
IF lineno <=5

THEN CASE lineno OF
1 : write(at(11,0),* *:25);
2 : write(at(49,0)," ':111);
3 : write(at(66,0)," ':12);
4 : write(at(14,1)," ':24);
5 : write(at(57,1),"' ':23);
END (* case *)
ELSE WITH fssshiprec DO
BEGIN
write(at(18,lineno-3),"' ‘:60);
totalbales := totalbales - container [lineno-5].bales;
totalnet := totalnet - container[lineno-5].net
END;
(* read the modifying line *)
nextshipinput,
write(at(55,22), '0k now?(y/n)'); read(ch)
UNTIL ch IN ['Y','y']
END; (* shipmodify *)

BEGIN (* getshipinfo *)
lineno := 1;fssshiprec.totalbales := 0;
fssshiprec. totalnet := 0;fssshiprec.nofcont := 0;
REPEAT { get the invoice number }
write(chr(12), at(x, 3), ‘Invoice number(append):’,

126

K X i M N SAY

fsscontract.number);
readin(fssshiprec.invoiceno);
tssshiprec.invoiceno: =CONCAT(fsscontract. number,
tssshiprec.invoiceno);
write(at(x,5), 'Invoice no. will be ‘,fssshiprec.invoiceno),
write(at(x,6), 'Correct?(y/n)');
read(ch)
UNTIL ch IN ['Y','y']; writeln(chr(12)); finish := false;
REPEAT
nextshipinput;
lineno := lineno + 1
UNTIL (lineno > 25) OR (finish);
fssshiprec.status .= occupied;
write(at(55,22), 'Input 0K?(y/n)'); read(ch);
IF ch IN ['N','n'] THEN shipmodify
END,

SEGMENT PROCEDURE shippaperwork;

VAR calendar : ARRAY([1..12] OF string[9);
formati, format2, formats3, firsthalf, sechalf: characters;
k,choice, 1, oneline,casecnt : integer;
ch : char;,

PROCEDURE signature;
BEGIN
skip(3);
writeln(out, ' ':20,'KOBE =~ MERCHANTILE , INC')'writeln(out);
writein(out,’ *:20, 'signed
writeln(out,' ':20,'S.HANAOKA, General Manager'),
END;

PROCEDURE underline(, j : integer);
BEGIN
write(out,* ‘:1);
FOR1i :=1TO j DO
write(out, '-');
writeln(out)
END;

PROCEDURE ashipinv;

BEGIN

WITH fsscontract, fssshiprec DO
BEGIN

skip(8);
writeln(out,' ':65, calendar [invoicedate. month],' ',
invoicedate.day, ', 19', invoicedate. year); writeln(out);
writeln(out,' ':7,invoiceno, ' ':24-LENGTH(invoiceno),
shpamtintons:7:3,' shorttons of',commodity);
writeln(out);
writeln(out, ' ':43, name); writeln(out);
writeln(out,' ':25, calendar [etd.month],* *,etd.day,', 19,
etd.year); writeln(out);

writeln(out,' ':9,origin,' ':36-LENGTH(origin), dest);
writeln(out);
writeln(out,' ':26,customer.name); writein(out);
writeln(out, ' ':8,customer.addr); writeln(out);
writeln(out, ' ':19, customer.contrno,

' ':41-LENGTH(customer.contrno),lc. number);

writeln(out);
writeln(out, ' ':19, number,' ':41-LENGTH(number), mitino);
skip(5);
writein(out,’ ':18, commodity);
EN
END;

PROCEDURE bshipinv;
BEGIN
WITH fssshiprec, fsscontract DO
BEGIN

format2 .= pricebase;

WHILE LENGTH(format2) > 31 DO

{ write pricebase using 2 or 3 lines }

BEGIN
i.= 3%
REPEAT 1{:=1+1 UNTIL format2ft) ="' *;
formati := COPY(format2,1,i-1);
format2 := COPY(format2,i+1, LENGTH(format2)-1);
writeln(out,' ':51,formati)

END;

writein(out,' ':51, format2);

writein(out,' ':17,'Container* Bales Net wgt(lbs)");

writeln(out,' ':17,'-~======n ccmee e Y

FOR K := 1 TO nofcont DO

WITH container (k] DO

BEGIN
prealtostr(net, format1);addcomma(format1); .
writeln(out,’ ':17, number, " ':14-LENGTH(number), bales: 4,

' ":3,format1:10)

’

1, e U ™) S " v > ™ 3% T ‘5'\‘"‘ AR I N I R GO S AL "*\ "u \.\’\". y '-"- b L P S “.{‘-'.\‘-'-,'Q'
1[.‘..“.' 2l ‘v '..... y ‘\. Dot f ﬁ"f \y L lF ;] ‘ (f.n‘. '.f! S A '(l. e o

writeln(out,* ':17,")

writeln(out,' ':3,nofcont,' X 40 foot');
writeln(out,' ':3, 'CONTAINERS");
prealtostr(totalnet, formati); addcomma(formati0;
dollarcent(shpamtintons*rate, format2); addcomma(format2);
STR(totalbales, format3);addcomma(format3);
writeln(out," ‘:17,"rota1‘,to;mat3:6,‘ Bales ‘,formati: 10,
' lbsa ;

writeln(out,' ':17,formati1:9,' lbs=',shpamtintons.7:3,

' shorttons‘,' eUsS',rate:8:2,' US$',format2:10);

' 14, '===============’), signature
END
END,
PROCEDURE ashippaklist,
BEGIN
WITH fsscontract, fssshiprec DO
BEGIN
skip(9);
writeln(out,’ "30,'P ACKING LIST?,
writeln(out,’ *:30, -—————-——==———cmcem—e- "); skip(2);
underline(3,74);

writein(out, ' '3, ' ==~==m=mm—eex 29 e)
skip(2);
writeln(out,’ ' 44,commodity); writeln(out);
writeln(out,' ':33, 'Container* Bales Net Weight(ibs)");
writeln(out, ' *:33,'~~======v —mme= e);
writeln(out);
END
END;

writein{out,’ *:3, INVOICE NO: ', invoiceno,
' *:29-LENGTH(invoiceno), 'DATE:
calendar [invoicedate. month], ' ', invoicedate.day,
',19', invoicedate. year); underline(4, 72);
writeln(out,’ ':3,'MESSRS: ',customer.name);
writeln(out,' ':11,customer.addr); skip(2); underline(4,72);
writein(out,' ':3,'SHIPPED PER: ‘,name,' ':28-LENGTH(name),
'SAILING ON/OR ABOUT: 'calendar(etd.month],’ °,
etd.day,’,19', etd. year); underline(3,74);
writeln(out,’ ":3,'FROM:’,origin,’ ':35-LENGTH(origin), ‘TO:",
dest); underline(3,74);
writeln(out,’ ':3,"MARKS & NOS.',' “:29, DESCRIPTION)

129

LA RS

w,

(AL

¥ .

-2

w oy .y~

- -

PROCEDURE bshippaklist,
BEGIN
WITH fsscontract, fssshiprec DO
BEGIN
FOR k := 1 TO nofcont DO
WITH container (k] DO
BEGIN
prealtostr(net, formati); addcomma(formati);
writeln(out,' ':33, number,' ':15-LENGTH(number), bales:6,
' *:5,formati:10)
END;
writeln(out,’ ':33,'———=———m e K
write(out,' ':3,nofcont,' X 40 FOOT CONTAINERS);
STR(totalbales, rormati) addcomma(formati);
prealtostr(totainet, format2); addcomma(format2);
writeln(out,* ':9, 'Total’,formati1:9,' Bales',format2:13,’ 1bs');
writeln(out,' ':33,format2:10,’ 1bs =',shpamtintons:10:3,
' shorttons');

signature
END
END,

PROCEDURE acertorigin,
BEGIN
WITH fsscontract, fssshiprec DO
BEGIN
skip(6); writeln(out,' ':12,'Shunsuke Hanaoka'); writeln(out);
writeln(out, Kobe Merchantile, Inc., 861 Six Ave.,’,
' San Diego, CA. 92101');
writeln(out); writeln(out,' :30,'M / ', name); writeln(out);
write(out,' ':9,calendar[etd. month],' ‘,etd.day,"
etd.year,’ ':11,customer.name);
IF LENGTH(customer.addr) <= 35
THEN BEGIN
writeln(out,’, ', customer.addr);
skip(5)
END
ELSE BEGIN
{ .= 35;
REPEAT | :={ - 1 UNTIL customer.addr(i] =
firsthalf := COPY(customer.addr,1,i-1);
sechalf COPY(customer. addr, i+1,
LENGTH(customer.addr)- 1),

writein(out,’, ', firsthalf); writeln(out);

130

....................

writeln(out,' °,sechalf);

skip(3)
END;
END
END;
PROCEDURE bcertorigin;
BEGIN
WITH fsscontract, fssshiprec DO
BEGIN

writein(out,' ‘:46,commodity); skip(3);
FOR k := 1 TO nofcont DO
writeln(out,’ ':4,container (k] .number);
skip(2);
writeln(out,' ':18,nofcont,' X 40 FOOT");
prealtostr(totalnet, format2); addcomma(format2);
writeln(out,' ':18,'CONTAINERS',' ':7,format2,’ 1bs');
skip(2);
writeln(out,* *:15, 'THESE COMMODITIES LICENSED BY THE U.S.'
,' FOR ULTIMATE DESTINATION');
writeln(out,' ':15,'JAPAN. DIVERSION CONTRARY TO U.S.
LAW PROHIBITED');
skip(26-nofcont);
writeln(out,' ':5, 'Chamber of Commerce of San Diego');
writein(out, ' ':41, ‘'California')
END
END; (* beertorigin *)

PROCEDURE aphytocert,

BEGIN :

WITH fsscontract, fssshiprec DO

BEGIN
prompt(sciname, 3, choice); write(chr(12));
skip(9); writeln(out,' ':33,'JAPAN'); skip(18);
writeln(out,' ':28,'Kobe Merchantile,Inc., 861 Six Ave.,

San Diego, CA 92101');

writeln(out,' ':28,customer.name, ', ');
writein(out, ' ':28,customer.addr); writein(out);
writein(out,' ':38,shpamtintons:7:3,' shorttons of ');
writeln(out);
writeln(out,’ ':38,commodity); writeln(out);
writeln(out, ' ‘:38, sciname([choice]); writeln(out);
writein(out,' ':30,nofcont,' X 40 Foot Containers');
[F nofcont <= 5 THEN writein(out); { = 0; oneline := 0;
REPEAT

0" AT AL 208" 0 A AN AL MO A SN N A T s At S N L A
. - o« o 0 * 4 3 K | Al B o & ~ ’ " 5 = b > o) o

IR O

e T The e Ye W Yy |

R TR T PR

" " %

......

write(out,' ':20);
oneline := oneline + 5;
REPEAT
i:=1+1,
write(out, container (1] . number: LENGTH(container (1] .
) number),’,’
UNTIL (1 = nofcont - 1) OR (1 = oneline);
IF 1 = nofcont - 1
THEN writein(out, container [nofcont] . number)
ELSE writeln(out)
UNTIL { = nofcont - 1,
IF nofcont <= 10 THEN writeln(out),
END
END;

PROCEDURE bphytocert,
BEGIN
WITH fsscontract, fssshiprec DO
BEGIN
writeln(out, ' ': 14, 'Imperial County, California');
writeln(out);
writeln(out,’ ':21,'Ocean Vessel',' ':25,'Japan’),
skip(3);
write(out,' ':15, 'This ‘,commodity, ', ', sciname(choice]);
FOR { := 1 TO LENGTH(sciname[choice]) DO
write(out,chr(8)); { backspace }
FOR 1 := 1 TO LENGTH(sciname[choice]) DO
write(out,'_"); { underline } skip(2);
! writeln(out,’ ':15,'was grown in the Imperial County,
California. The Hessian Fly,');
writeln(out);
write(out,' ':15, 'Phytophaga Destructor (Say)');
FOR1{ :=1 TO 27 DO
write(out,chr(8));
FOR{ :=1 TO 27 DO
write(out, '_');
writeln(out, ' is not known to occur in'); writein(out);
writein(out,' ':15, 'the Impenal County, Califorma. "),
END { with }
END;

PROCEDURE fumigation;
BEGIN

WITH fssshiprec DO
BEGIN

.............................
............

y iE atk Ltk sty Lt eat ke’ fa” B’ 8a° et €27 Bt fa' 2a° Ra' fat A0

skip(28);
IF nofcont <= 10
THEN FOR Kk := 1 TO nofcont DO
writeln(out,’ ':15,container (k].number)
ELSE FOR k:= 1 TO 10 DO
BEGIN
write(out,' ':15,contatner [k} .number);
IF k+10 <= nofcont
THEN writeln(out, ' ':10, container [k+10] . number)
ELSE writein(out)

END;
IF nofcont <= 10 THEN skip(13-nofcont)
ELSE skip(3);
1 :=0
{ seperate the shipname and voyage number }
REPEAT
f:=1+1

UNTIL (name(i]='V') OR (name(i)='v') OR (1=LENGTH(name));
IF (name[i] <> 'v') AND (namefi] <> 'V*)
THEN BEGIN
REPEAT { get the voy* since not given }
write(chr(12), 'No voyage number, voyage *:');
readin(format2)
UNTIL format2 <> ' *'; formati := name;
write(chr(12))
END
ELSE BEGIN
formati := COPY(name,1,i-1);
format2 := COPY(name,{, LENGTH(name)-i+1)
END;
writeln(out,’ ':40,format1); writelin(out);
writein(out,' ':21,format2,’' ':28, dest)

END { with }

END,

BEGIN
(* initialize *)
calendaril] = '‘January'; calendar{2] := 'February"
calendar (3] .= 'March’, calendar (4] := 'Apnil;
calendar[5] := 'May’, calendar[6] := '‘June’,
calendar(7] := 'July’; calendar (8] := '‘August’;
calendar (9] := ‘September’; calendar(10] := ‘October’;
calendar{1i] = 'Noverwer'; calendar12] = 'December’;

REWRITE(out, 'PRINTER: '),

.....

DRI
......

.......

XA AR

WY W =
A L

NOR o ot o o gl ol

At

mm““m“-“-"m“" W TN T Y W T TN TR I I R NN AT N TR N KN U RO W RN TOE U8 TUN FURN PO W7 Tue T (W,

casecnt = 0;
REPEAT
casecnt = casecnt + 1;
CASE casecnt OF
1 : BEGIN
write(chr(12), at(0,3),
‘Turn on the TEC, insert the INVOICE sheet and press
<RETURN>');
readin;
ashipinv;,
bshipinv
END;]
2 . BEGIN :
write(at(0,3),
‘Now put the PACKING LIST sheet and press <RETURN> ');
readin,;
ashippaklist;
bshippaklist
END;
3 : BEGIN
write(at(0,3),
‘Certificate of Origin sheet, Press <RETURN> when ready’);
readln;
acertorigin,
becertorigin,
END; o
4 : BEGIN !
write(at(0,3), 3
'Phytosanitary Certificate sheet, press <RETURN> when !
ready '); s
readin; ']
aphytocert; :
bphytocert :
END,
5 . BEGIN
write(at(0,3),
‘Fumigation Certificate sheet, press <RETURN> when
ready ');
readin,
fumigation
END
END,
write(at(0,2k "' ":78); /
write(at(0,3), Repeat?(y/n)'); read(ch);
IF ch IN ['Y','y'] THEN casecnt := casecnt - 1

134 .

P A g Ny I \".,f JAl

A et

L . el . . - P - . . - . R T ;) A < -
AR 1Y, Sy A R e e = TERSSSSNNS Y AN A A s IR AU P PN M P A, OENCHEREM B g AR AR A MF AN oy, ..uc\!\-w\ - .\..\.s.....-

CLOSE(out)
135

(* shippaperwork *)

’

.
)
~ .
LR W P
B

UNTIL casecnt = 5
END

- -
'-.i S

\"-('\ \..‘h

A3

SEGMENT PROCEDURE fspshipment;
VAR choice, loc, sfloc, 1, j,m,o0ld, mm : integer;
done : boolean;
inp : string[10];
shpamtintons, rate,ratel,rate2, cutwgt . real,;
ch : char;

PROCEDURE truckconvert(line:characters; VAR tr : trucktype);
CONST blank ="' /;
VAR temp : trucktype;
i, J,max,start : integer;
gross, tare : real,
itern : characters;
BEGIN
line := CONCAT(line,'$");
WITH temp DO
BEGIN
mthday := blank;wgtticketno := blank;net := 0;bales := 0;
END;
i:=1;, j:=1,max := LENGTH(line);
REPEAT
WHILE(line[i] = blank) AND (i < max) DO
f:=1+1,;
start ;= |;
WHILE(line[i] <> blank) AND (i < max) DO
f:=1+1,
item := COPY(line,start,i-start);
CASE j OF
1 : temp.mthday := item,
2 . temp.wgtticket = item;
3 . temp.bales := conint(item);
4 . gross .= conreal(item),
5 . BEGIN
tare := conreal(item);
temp.net .= gross - tare
END
END; (* case *) :
J=Jj+1 *

a e

ad BREERad.

UNTIL (§j > 5) OR (i = max);
tr := temp
END;

PROCEDURE gettruckrate;
VAR j : integer; inp : characters;

J =0
REPEAT
Ji=J+1
CASE j OF
1 : BEGIN
write(chr(12), at(0,2), 'Cutting point weight:*);
readin(inp);
IFinp<>"'"
THEN cutwgt := conreal(inp)
EISEj:=J-1
END;
2 . BEGIN
write(at(0,4), 'Rate below cut point:');
readin(inp);
IF inp <> '
THEN ratel := conreal(inp)
ELISE j:=j -1
END;
3 . BEGIN
write(at(0,6), 'Rate above cut point:');
readin(inp);
IF inp <> *°
THEN rate2 := conreal(inp)
EISE § =~ 1
END;
END; { case}
END; { gettruckrate }

PROCEDURE truckcostcomp;
VAR truckmenu : menutype;

ch : char,
choice : integer;
BEGIN
truckmenu(0] := 'Truck rate computation’;
truckmenu(1] := 'By shorttons';
truckmenu(2] := 'By bales’;
fspshiprec. totaltruckcost = 0;
REPEAT

prompt(truckmenu, 2, choice);
write(at(0,10), 'Compute ', truckmenu(choice],’ is it correct?

(y/n)");

read(ch)
UNTIL ch IN {'Y','v'];
WITH fspshiprec DO

s abat gt b taatat 1 gt Vet g’ .2 _at 4, ‘hateantdog 'y " W P W N S W T R O O R R R OweTS h a2 ba afe W' 0e” e

BEGIN
CASE choice OF
1 . BEGIN
{ get the rates }
REPEAT
gettruckrate;
write(at(0,22), 'Input OK?(y/n)");
read(ch); write(at(0,22),' ‘:30) ,
UNTIL ch IN ['Y','y']; -
{ compute }
FOR 1 := 1 TO noftruck DO
BEGIN
IF truck(i].net/2000.0 < cutwgt
THEN truck(i].cost := (truck(i].net/2000.0) * ratel
ELSE truck|i].cost := (trucki].net/2000.0) * rate2;
totaltruckcost := totaltruckcost + truck[t].cost
END
END; K
2 ' BEGIN 3
{ get the rates }
REPEAT
gettruckrate;
write(at(0,22), 'Input OK?(y/n)");
read(ch); write(at(0,22),' *:30)
UNTIL ch IN ['Y','v'];

{ compute }
FOR { := 1 TO noftruck DO
BEGIN

IF truck[i).bales < cutwgt
THEN truck[i].cost := ratel
ELSE truck(i].cost := (truck[i].bales/cutwgt) * rate2;
totaltruckcost := totaltruckcost + truck[i].cost
END
END
END; { case }
END; { with }
END;

PROCEDURE fspcompute;
BEGIN _
WITH fspcontract DO R
BEGIN

I = 1. (* find out which months *)

write(chr(12),at(18,0), 'month - @price');

REPEAT

E write(at(20,1), timeofship[i].month:2," §,

timeofship(i] . unitprice:7:2); ol
i=i+1; Rt
UNTIL (1 > 6) OR (timeofship[i].month = 0); O
REPEAT N
write(at(20, 10), 'Month = *); X
readin(inp); -
IF inp <> N
THEN BEGIN :
mm := conint(inp); o
{:=0; >
REPEAT 3
{:=1+1, m:={ A
UNTIL (timeofship[i].month = mm) OR (i = 7); s
IF1=7 =
THEN BEGIN)
write(at(20, 12), 'No such month listed, 2
press <RETURN>'0; i
readin .
END \
END 2
UNTIL (timeofship{i].month = mm) AND (inp <> ' '); \
shpamtintons := fspshiprec.totalnet / 2000; :
timeofship[m].bal := timeofship[m].bal - shpamtintons; !
balofship := balofship - shpamtintons; e
fspshiprec. payment := shpamtintons * timeofship[m].unitprice;)
4
truckcostcomp; { compute the truck cost } N
{ now save into the fspshipfile first } "
fspshipfile* := fspshiprec;

SEEK (fspshipfile, sfloc); \
PUT(fspshipfile), CLOSE(fspshipfile); "

{ output some information }

write(chr(12),at(0,2), Total of ', shpamtintons:8:3,' shorttons');
write(at(0,4), Payment is $',fspshiprec. payment:10:2); n
write(at(0,6), 'Press <RETURN>'); readin; 9

IF (timeofship[m].bal < 0) AND (timeofship[m+1].month <> 0)]
THEN timeofship{m+1].bal ‘= timeofship[m+1] bal + &
timeofshup[m] . bal,

IF nofshipment <> 0
THEN BEGIN (* more tha.1 one shipments so *) 3
i := 0;J := shipmentinfo; (* link up the shipment records *)
RESET(fspshipfile, '#5: fspshipfile');

REPEAT :
SEEK(tspshipfile, j);old := j; ;
GET(fspshipfile); J

J := tspshipfile*.link; 1 := 1+ 1 '
UNTIL i := nofshipment,; .
fspshipfile®.link := sfloc;
SEEK(fspshipfile, old); PUT(fspshipfile);
CLOSE(fspshipfile); (* put back into the original place *)
END
ELSE shipmentinfo := sfloc; (* first shipment *)
nofshipment := nofshipment + 1; |
END;, (* with *) .
END; (* fspcompute *) .

R R ity

PROCEDURE getpurshipinfo; ‘
VAR K, lineno, xaxis : integer;
ch : char;
finish,goon : boolean,;
temp : characters;
tempdate . datetype;

¥

LA O

v
Ay

FUNCTION psproceed : boolean; 4
BEGIN '
IF EOF THEN BEGIN RESET(INPUT); EXIT(fspshipment) END
ELSE IF temp = ' '
THEN BEGIN
psproceed := false;
lineno := lineno - 1)
END
ELSE psproceed := true)
END;

PROCEDURE nextpurshipinput; -
BEGIN |
WITH fspshiprec DO .
BEGIN
write(at(0,2),
' Date Wgt ticket # Bales Gross Tare Net ');
write(at(0, lineno+2),lineno:2,'. ');
readin(temp);
finish := (temp = 'F') OR (temp = 'f'0;

-« v, e, .‘:
. e A

140

IF (psproceed) AND (NOT finish) s,
THEN BEGIN "
truckconvert(temp, truck[lineno]); ;
write(at(62, lineno+2), truck [lineno] . net: 8:1);
totalbales := totalbales + truck(lineno].bales;
totainet := totalnet + truck(lineno].net; .
IF linenc > noftruck THEN noftruck := lineno he
{nessary not to reset noftruck when called from a
purshipmodify} »
END; 3
IF finish e
THEN write(at(0, lineno+2),' ':70) ;;'
END { with } ~
END; (* nextpurshipinput *) N
PROCEDURE purshipmodity; o
BEGIN Ny
REPEAT v
REPEAT t
goon := true; :
write(at(s5,22), ‘Which line to change:'0; R
readin(lineno); write(at(s5,22),' ':24); X
IF (lineno < 1) OR (lineno > fspshiprec. noftruck))
THEN BEGIN h
write(at(50,22),chr(7), 'No such line, press .
<RETURN>"'); J
readin; write(at(50,22),' ':25);goon := false
END .
UNTIL goon,; N
(* now erase the line to be changed *)
WITH fspshiprec DO
BEGIN :
write(at(4,lineno+2),* ':70); =
totalbales := totalbales - truck[lineno].bales; 2
totalnet := totalnet - truck(lineno].net :
END; %
(* read the modifying line *) A
nextpurshipinput; : d
write(at(55,22), 'OK now?(y/n)');read(ch) xy
UNTIL ch IN ['Y','y'] ‘e
END;, (* purshipmodify *) -
BEGIN (* getpurshipinfo *) -

lineno : = 1; fspshiprec. totalbales := 0; bt
fspshiprec.totalnet .= 0;fspshiprec.noftruck := 0;

X

write(chr(12)); { clear screen }
REPEAT

nextpurshipinput,

lineno := lineno + 1
UNTIL (lineno > 20) OR (finish);
fspshiprec.status := occupied;
write(at(55,22), 'Input 0K?(y/n)');read(ch);

IF

ch IN ['N’,'n'] THEN purshipmodity
END;

BEGIN (* fspshipment *)
RESET(fsphashfile, '#5: fsphashfile');
REPEAT (* till the correct contract no given *)

done := true;
REPEAT
write(chr(12),at(x,3), 'Contract number:');
readin(contractno)
UNTIL (contractno <> ' ') OR EOF;
IF EOF THEN BEGIN RESET(INPUT);CLOSE(fsphashfile);
EXIT(tspshipment) END;
i:= -1,
REPEAT
1:=1=1;
SEEK(fsphashtile, 1);
GET(fsphashfile)
UNTIL (EOF(fsphashfile)) OR (fsphashfile*.number =
contractno);

IF EOF(fsphashfile)

THEN REPEAT
prompt(error2,3, choice);
CASE choice OF
1 : BEGIN CLOSE(fsphashfile); EXIT(fspshipment) END;
2 : BEGIN CLOSE(fsphashfile);fspinquery END;
3 . done := false
END;
UNTIL choce = 3

ELSE BEGIN (* ok find the contract info from fspfile *)
loc := fsphashfile”.link; CLOSE(fsphashfile);
RESET(fspfile, '#5:fspfile');

SEEK(fspfile, loc);
GET(fspfile); fspcontract := fspfile*;
CLOSE(fspfile)
END;
UNTIL done;
142
N A R R N N R N G N R 2 N R R R T SR SRR NI

R LUTUWUS UW UL W L UW U USTWANAT U W LN “af (P [(PRFLAT) ot gl ate gt A7 al aty aty v, at g at U - L) ‘2 g 8Vs i'a f'ad'a f'a t'ad's d'8.b'adY g

getpurshipinfo;
(* put this info into the fspshipfile *))
RESET(fspshipfile, ‘*S: fspshipfile'); sfloc := -1, g
REPEAT

sfloc .= sfloc + 1;

SEEK (fspshipfile, sfloc);

GET(tspshipfile)
UNTIL (EOF(fspshipfile)) OR (fspshipfile*.status = empty);
write(at(0,22), ‘sfloc = *,sfloc);

¥ 99T

IF EOF(fspshipfile)
THEN BEGIN
CLOSE(fspshipfile);
write(chr(12),chr(7), at(x,2),

‘DOOMESDAY no more space in the tile)
write(at(x,3), 'Please call the system designer');
write(at(x, 4), 'Meantime press <RETURN>

and do other work'); 4
readin; EXIT(fspshipment)
END;

(* make the necessary computation and save it *)
fspcompute,

(* now put it into the fspfile *)
RESET(fspfile, '#5: fspfile');
tspfile* := fspcontract; R
SEEK (fspfile, loc); PUT(fspfile); f
CLOSE(fspfile);

END; (* fspshipment *) 9

SEGMENT PROCEDURE listpurcontr; (*purchase contract info *) N
VAR k : integer; o
BEGIN
WITH fspcontract DO
BEGIN
write(chr(12), at(15,0), 'Feed Stuff Purchase Contract
Information ');
write(at(x, 1), fspnewconmenu(1]," ', nhumber);
write(at(x, 2), fspnewconmenu|[2],' ', contrdate. month, /", A
contrdate.day, '/, contrdate. year); :
write(at(x,3), fspnewconmenul[3],’ ', farmer. name); .
write(at(x, 4), fspnewconmenu(4],' ', farmer.addr); o
write(at(x,5), fspnewconmenu(5],' ',commodity);

143

R) .o . . e [N TR R " P A e Cae Ca vy " N e a Y
8 .‘_,., AN AN e f,‘z.r_‘fz_f (Lo e \-r'-_-.,- RO .".'-. AR LN . ‘.\-\ NN

kK:=1; ‘
write(at(x,6), &
'Time of shipment . Months Quantity Balance Unitprice'); X
REPEAT
write(at(29+x, 6+x), timeofship(k]. month:2, timeofship[k] . wgt ;
110, timeofship(k].bal:12:2,' $',timeofship[k].unitprice:8:2); T
k:=k+1 ‘

UNTIL (timeofship(k].month = 0) OR (k > 6);
write(at(x, 6+k), 'total shipment :',totalship:8:2); -

write(at(x,7+k), 'balance of shipment:', balofship:8:2);
write(at(x,8+k), '* of shipment made:', nofshipment)
END;
END; (* listpurcontr *)

SEGMENT PROCEDURE prlistpurcontr; (* contract infor to printer *)
VAR K : integer;
BEGIN
WITH fspcontract DO
BEGIN
skip(4); | -
writ(el;u(out,' ':20, 'Feed Stuff Purchase Contract Information'); -
skip(3);
writeln(out, ' ':10,fspnewconmenu(1],’ ‘, number); writeln(out);
writeln(out,' ':10,fspnewconmenu(2],' ', contrdate.month,'/",
contrdate.day,'/', contrdate. year), writein(out);
writeln(out,’ ':10,fspnewconmenu(3],' ', farmer.name);

e W i Yo_gin g0 ¢

Fl S

writeln(out);

writeln(out,’ ':10,fspnewconmenu(4)],’ ', farmer.addr); <]
writeln(out); N
writein(out,’ ':10,fspnewconmenu(5],' ',commodity); .
writeln(out); N

skip(2); k := 1, N
writeln(out,' :10, -
'‘Time of shipment : Months Quantity Balance Unitprice');
REPEAT

- R,

writeln(out,' ':39,timeofship[k].month:2, timeotship[k]. wgt: 10, 2
timeofship[k].bal:12:2,' $',timeofship(k].unitprice:3:2); :
K. =k+1 "
UNTIL (timeofship[k].month = 0) OR (k > 6); skip(2);)
writeln(out,' ':10, 'total shipment :', totalship:8:2); =
writein(out); :
writeln(out,' ':10, 'balance of shipment :', balofship:8:2); -
writeln(out); .
writeln(out,’ ':10,'* of shipment made ', nofshipment) ¥
END; =

END; (* prlistpurcontr *)

SEGMENT PROCEDURE purcontrinfo;
VAR |, j,k,num, entries, loc : integer;
commoname : string[25];
quit : boolean,
commodlist : intype;
ch . char;
twodeci, stri,str2,str3 . characters;

PROCEDURE listpurship;
BEGIN
WITH fspshiprec DO
BEGIN
write(chr(12), at(0,0), 'Shipment No. ',num:2);
write(at(s, 1), ‘Date’, at(18,1), 'Wgt tkt*' at(33,1), 'Bales’,at(41,1),
‘Net Wgt', at951,1), 'Cost');
FOR k := 1 TO noftruck DO
WITH truck[k] DO
BEGIN
prealtostr(net, str3); addcomma(str3);
write(at(5,2+k), mthday, at(18,2+k), wgtticketno,
at(31,2+k), bales:5, at(40,2+k), str3:7,cost:9:2) %

r P R

L A S T T v I a3

END;
STR(totalbales, str1); addcommaf(stri);
write(at(0, 4+noftruck), '‘Total bales =',str1);
prealtostr(totalnet, str2); addcommaf(str2);
write(0,5+noftruck), 'Total net =',str2);
dollarcent(payment, twodeci); addcomma(twodect);
write(at(0,6+noftruck), 'Payment =$', twodeci);
dollarcent(totaltruckcost, str3); addcomma(str3);
write(at(0,8+noftruck), 'truck cost =$',str30;

END
END,

N P AL -

PROCEDURE printpurship;
BEGIN
‘W1TH fspshiprec DO
BEGIN
write(at(0,22),' ':70);
write(at(0,22), 'Need a printout?(y/n)");
read(ch);IF EOF THEN BEGIN RESET(INPUT);EXIT(printpurship)
END;
[F ch IN ['Y","y']
THEN BEGIN

LA AR TN

AP

*
f

write(at(0,22), 'Turn on the TEC and press <RETURN>'):
readin,;
REWRITE(out, 'PRINTER:"); skip(4);
writein(out,' Shipment No.',num:2); writein(out);
writeln(out,' ':4,'Date',’ ':14, ‘'Wgt ticket®*',' ':5 'Bales’,
' 5, 'Net wWgt',' ":5,'Cost'); skip(2),
FOR k := 1 TO noftruck DO
WITH truck[k] Do
BEGIN
prealtostr(net,str3); addcomma(str3);
writeln(out,' ':4,mthday,"' ':12, wgtticketno: 12,
' ':5,bales:5," ':5,str3:7,' ':5,cost:7:2);
writeln(out)
END;
STR(totalbales, str1); addcomma(stri);
prealtostr(totalnet, str2); addcomma(str2);
dollarcent(totaltruckcost, str3); addcomma(str3);
dollarcent(payment, twodect); addcomma(twodeci);

writeln(out);)
writeln(out,' ':5, 'Total bales =',str1); writelin(out);
writeln(out,' 'S5, 'Total net =',str2);writeln(out);

writeln(out,' ':5,'Payment =$',twodeci:10); writeln(out);
writeln(out,' 5, 'Truck cost =$',str3:10);
COLSE(out)
END
END; (* with *)
END;

PROCEDURE subpurcontr; { for shipment info }
BEGIN
[F fspcontract.nofshipment > 0 THEN
BEGIN ‘
write(at, (0,22),
‘Like to see all shipments in sequence?(y/n/<ctrl-c> to quit)');
read(ch); IF EOF THEN BEGIN RESET(INPUT); EXIT(subpurcontr)
END;
IFch IN ('Y, y']
THEN BEGIN
1:=0,J := fspcontract. shipmentinfo;
RESET(fspshipfile, "#5: tspshipfile');
REPEAT
SEEK(fspshipfile, j);
3ET(fspshipfile);
J = fspshipfile”.link;
fspshiprec := fspshipfile”;

146

-

(]

. o . - . I P P S PR T (L) T T LTI N
¥ '-,'\'-,." -.'f\- R O PP ,-,"‘-;:.-';‘.r" L e e e e ARV , ~.‘~. NN AN
N e dl 2 y ! & G}

num :=1{ + 1, { used {n printing proc }
listpurship, printpurship; 1 =1 + 1;
IF | < fspcontract.nofshipment
THEN BEGIN
write(at(0,22), 'Want to see next shipment?
(y/n))
read(ch); write(at(0,22)," ':50);
IF EOF THEN BEGIN CLOSE(fspshiptile);
RESET(INPUT);
EXIT(subpurcontr) END

END
UNTIL (i = fspcontract.nofshipment) OR (ch IN ['N’,'n']);
CLOSE(fspshipfile);
END
ELSE BEGIN
REPEAT
write(at(0,220,' ':70); (* erase previous line *)
REPEAT

write(at(0,22), 'Which shipment(<ctri~c> to quit):');
read(num);IF EOF THEN BEGIN RESET(INPUT);
EXIT(subpurcontr)
END
UNTIL (num>=1) AND
(num<=tspcontract.nofshipment),
(* locat the shipment info *)
:= 0; J := fspcontract.shipmentinfo,
RESET(fspshipfile, '#S: fspshipfile');
REPEAT
SEEK (fspshipfile, §);
GET(fspshipfile);
J := fspshipfile*.link; i ;=i + 1
UNTIL {.= num;
fspshiprec := fspshipfile*; CLOSE(fspshipfile);
listpurship; printpurship,
write(at(0,22), 'Like to see another shipment?(y/n)');
read(ch);
[F EOF THEN BEGIN RESET(INPUT); EXIT(subpurcontr)
END
UNTIL ch IN ['y","Y’]
END (* else *)
END
END;

BEGIN (* purcontrinfo %)
REPEAT

write(chr(12), at(x,3), 'Contract number:');
readin(contractno);
UNTIL (contractno <> ' ‘) OR EOF; (* not empty or terminate *)
IF EOF THEN BEGIN RESET(INPUT); EXIT(purcontrinfo) END;
RESET(fsphashtfile, '*S: fsphashfile'); { := - 1,
REPEAT
i:=1+1;
SEEK(fsphashtile, 1),
GET(fsphashfile)
UNTIL (EOF(fsphashfile) OR (fsphashfile*.number = contractno),

IF EOF(fsphashfile) (* not found *)
THEN BEGIN

CLOSE(fsphashfile);

write(at(x,5), chr(70, 'No such contract in the file');

write(at(x,7), 'Press <RETURN>'); readin;

END

ELSE BEGIN

CLOSE(fsphashtfile);

loc := fsphashfile®.link,

RESET(fspfile, '*5:fspfile');

SEEK (fspfile, loc); GET(fspfile); CLOSE(fspfile);

fspcontract := fspfile”;

listpurcontr,

{ prntout to the printer if desired }

write(at(0,22), 'Need a printout?(y/n));read(ch);

IF EOF THEN BEGIN RESET(INPUT);EXIT(purcontrinfo) END;

IF ch IN ['Y",'y']

THEN BEGIN :
write(at(0,22), 'Turn on the TEC and press
<RETURN>");

readin; REWRITE(out, 'PRINTER:');
prlistpurcontr; CLOSE(out)
END;

subpurcontr { to list/print shipment information }

END;

END;

SEGMENT PROCEDURE fspresiduecheck;
VAR Jj,opencnt . integer,
BEGIN
write(chr(12),at(x,2), ‘Available Spaces'); opencnt := 0;
write(at(x, 4), ‘Contract file: ');
J .= 0; RESET(fspfile, '*S.fspfiel’),
SEEK(fspfile, j); GET(tspfile);

148

Y WHILE NOT EOF(fspfile) DO

N BEGIN

Q IF fspfile® status = empty

0y THEN BEGIN

R opencnt .= opencnt + 1;
N write(at(x+19, 4), opencnt:3)
A END;

o J:=J+1

P SEEK (fspfile, J);

; GET(fspfile)

- END;

? CLOSE(fspfile);

y opencnt = 0; j .= 0;

o write(at(x,5), 'Shipment file: ');

RESET(fspshipfile, '#5:fspshipfile');
SEEK(1spshiptfile, }); GET(fspshipfile);
WHILE NOT EOF(fspshipfile) DO
BEGIN
IF fspshipfile®.status = empty
THEN BEGIN
opencnt = opencnt + 1,
write(at(x+19,5),opencnt:3)
. END;
Ji=J+1
SEEK (fspshipfile, §);
GET(fspshipfile)
END;
CLOSE(fspshipfile);
write(at(x,7), 'Press <RETURN>'); readin
END; { fspresiduecheck }

a

e PP LA AR YO e

s

. SEGMENT PROCEDURE fspinquery;
- VAR {, J,k,num,entries, loc : integer;
' commoname : string[25];
quit : boolean;
commodlist : intype,
ch : char:
twodecy, stri,str2,str3 - characters;
Y BEGIN (* fspinquery *)
quit = false;
REPEAT
prompt(fspquerymenu,5, choice);
CASE choice OF
1 . 3EGIN
RESET(fsphashfile, '#5: fsphashfile');

e

P .
s s &R

A

- "- "- .‘. (- ‘..

149

. /‘c{--‘. -’_:f’-,.'-..'_..:.-

write(chr(12), at(15,0), 'List of all commaodities');
entries := 1; commodlist(1] := ' *; § 1= -1,
REPEAT
REPEAT
Ji=J+ 1
SEEK (fsphashfile, j);
GET(fsphashfile)
UNTIL (EOF(fsphashfile)) OR (fsphashfile”.status <>
empty);
IF NOT EOF(fsphashfile)
THEN BEGIN
i:=1,
(* check if this record's name is already in
commodity array, if not put it *)
WHILE (i < entries) AND
(tsphashfile*.commodity <> commodlist(i]) DO
f:=i+1,
IF i := entries
(* not in customers array so put it in *)
THEN BEGIN
commodlist{i] :=
fsphashfile”. commuodity,
entries := entries + 1
END,
END
UNTIL EOF(fsphashfile);
CLOSE(fsphashfile); i := 1;
WHILE { <= entries - 1 DO
BEGIN
IF validate(commodiist[i])
THEN write(at(x,1),commodlist{i]);
:=1+1
END;
write(at(55,22), 'Press <RETURN>'); readin
END;
2 . BEGIN
REPEAT
write(chr(12),at(x,3), 'Commodity name:');
readin(commoname)
UNTIL (commoname <> ' ') OR EOF;
(* not empty or terminate *)
IF EOF THEN BEGIN RESET(INPUT); EXIT(fspinquery) END;
RESET(fsphashfile, *5:fsphashfile');
write(chr(12),at(15,0), 'Contracts of',commoname);
J =2

150

. - .

l;-_,s._\’ P AN, (:.'.- .,"‘J';' L 0 ':.__'- "-I'-'J' \'_-.'_ ._;.._ N

FOR | := 0 TO max DO
BEGIN
SEEK(fsphashfile, i);
GET(fsphashfile);
IF (fsphashfile*.status = occupied)
AND (fsphashfile*.commodity = commoname)
THEN BEGIN 4
write(at(x, J), fsphashfile*. number,' °, 3
fsphashfile*.name);

Ji=g+1
END; N
IF J =22 (* full screen *) :
THEN BEGIN

write(at(55,22), 'Press <RETURN>");
readln; write(chr(12); j := 2
END,
END;
write(at(55,22), 'Press <RETURN>'); readin; :
CLOSE(fsphashfile) N
END; '
3 : purcontrinfo;
4 : fspresiduecheck;
5 : quit .= true;
END; (* case *)
UNTIL quit 3
END; !

SEGMENT PROCEDURE fspnew;
(* to add new feed stuff contract and setup the data structure
accordingly *)

VAR lineno, j, k, loc, choice, addr, i : integer;
goon, finish, done, located . boolean,
temp : characters; :
ch : char; .
tempdate : datetype;

PROCEDURE tosconvert(line:characters; VAR tos:tostype);
CONST blank = ' ';
VAR temp : tostype,
i,J, max,start . integer;
item : characters;
BEGIN
line := CONCAT(line, '$");
max = LENGTH(line);
WITH temp DO

LI L

A L] M LA O N I T I S) N %a JUE R T B YR DY R I) L. v AP L D N S S T ~ ‘.‘-\d‘--f‘f.‘
' AL LAY J‘.J‘I“\f{ S s .-.r o J'-J“,Q‘_I“{'_-'_ S .-.(}')r < Vo o L T LD e S \

(s~ 9

gy

A.".

BEGIN
month := 0; wgt := 0; bal := 0; unitprice := 0
END;
1:=1, J:=1,
REPEAT
WHILE(line{i] = blank) AND (1 < max) DO
f:=1+1;
item := COPY(line,start,i-start);
CASE j OF
1 : temp.month := conint(item);
2 . BEGIN
temp.wgt := conint(item);
temp.bal .= temp.wgt
END;
3 : temp.unitprice := conreal(item)
END, (* case *)
Ji=j+1
UNTIL (j > 3) OR (i = max);
tos .= temp
END, (* tosconvert *)

PROCEDURE getfspinfo,
(* get all the information for the new contract *)

FUNCTION pproceed : boolean;
BEGIN
IF EOF THEN BEGIN RESET(INPUT);EXIT(fspnew) END
ELSE IF (lineno <> 6) AND (temp = ' ')
THEN BEGIN
pproceed := false;
lineno := lineno - 1
END
ELSE IF (lineno = 6) AND (temp = ' *)
THEN BEGIN
pproceed := false;
k. =k-1
END
ZL3E pproceed = true
END,

PROCEDURE nextpurinput,
BEGIN
WITH fspcontract DC
CASE lineno QF
1,3,4,5:

SN RS T e S ene iy

R A R AN AR A A T T N N TN T TR Y N Y U Y S O R O DR R OR T LR IR R R U 3 el "o cut Val tad ol tad Voh a@ tah Vb Nak Ual Mo iog % 5.1-.

BEGIN
write(at(x,lineno), lineno:2,'. *, fspnewconmenu/lineno]);
readin(temp);
IF pproceed
THEN CASE lineno OF
1 : number := temp;
3 . farmer.name := temp;
4 ;. farmer.addr .= temp;
5 : commodity = temp;
END: (* case *)
END;
2 : BEGIN
write(at(x,2),' 2. ', fspnewconmenu|2]);
readin(temp);
IF pproceed
THEN BEGIN
dateconvert(temp, contrdate);
IF datecheck(contrdate) <> ok
THEN BEGIN
write(at(38,2), 'Error in input, press
<RETURN>");
readin; write(at(38,2),’ ':30);
lineno := lineno - 1)
END y
END
END; .
6 . BEGIN
WITH fspcontract DO g
BEGIN 4
totalship := 0;
write(at(x,9)," 6. ', fspnewconmenu(6]); .
finish .= false; kK := 0; .
REPEAT
kK:=k +1;
GOTOXY (x+33,9+k); readin(temp); .
finish := (temp = 'F') OR (temp = 'f'); 2
IF (pproceed) AND (NOT finish)
THEN BEGIN :
tosconvert(temp, timeofship(kj);
IF (timeofship(k].month < 1) OR
(timeofship[k].month > 12)
THEN BEGIN
write(at(x+30, 9+k),
‘Error in input, press <RETURN> J;
readin,;

RN R

-
‘-
‘s
~
)
-
.

write(at(x+30,9+k),' *:30); k ‘= k - 1
END
ELSE totalship := totalship +
timeofship(k]. wgt
END;
UNTIL (k = 6) OR (finish);
balofship := totalship;
IF k < 6 THEN BEGIN
write(at(x+30,9+k)," ':30);
timeofship(k].month := 0
(* 0 is endofdata marker *)
END
END

END;
END; (* case *)
END; (* nextpurinput *)

PROCEDURE fspmodify;
(* to modify the fspcontract input information *)
BEGIN
REPEAT
REPEAT
goon .= true;
write(at(55,22), 'Which line to change:');
readin(lineno); write(at(s5,22),' ':24);
IF (lineno < 1) OR (lineno > 6)
THEN BEGIN
write(at(55,22), chr(7), 'No such line!Press <RET>");
readin; write(at(55,22),' ':25);goon := false
END
UNTIL goon,;
(* now erase the line to be changed *)
IF lineno <=5
THEN BEGIN
write(at(38,lineno),' ':40);
GOTOXY (38, lineno)
END
ELSE FOR j :=1 TO k DO
write(at(43,9+j)," ':20);
(* no GOTOXY here since it is in case 6: *)
nextpurinput,
write(at(55,22), '0K now?(y/n)");
read(ch);
UNTIL {ch = 'Y') OR (ch = 'y')
END; (* fspmodify *)

154

e)

A

L B)) R

v 'I(‘\' ‘\'4 Cw "'l -(\"F'. }' a"l’.'('\ 'V," ;-*'-a'-)'c \f’q e '\"- ;4{"p'~'\"..’ ‘\t#'\"\ Wf‘-] ‘\t-.\._ 3 ..‘ f--f \"-'r‘f\f‘vf\'. \r‘-’: A
® 2 . » . o Y 3 e §9 Wy Lk R e TR TR T T .7

BEGIN
write(chr(12), at(15,0), fspnewconmenu[0]);
lineno := 1,
REPEAT
nextpurinput, ‘
lineno := lineno + 1
UNTIL lineno > 6, f
fspcontract.nofshipment := 0; fspcontract.status := occupied; A
write(at(55,22), 'Input 0K?(y/n)");
read(ch); IF (ch = 'N') OR (ch = 'n') THEN fspmodify
END; (* getfspinfo *)

BEGIN (* fspnew *) e
getfspinfo; (* input all pertinent new purchase contract info *) .
(* go through the file and make sure that the given contract* .

is not already in the file *)
RESET(fsphashfile, '#5: fsphashfile');

[T N ¢

REPEAT
done := true; ’
= -1 >
REPEAT 1S
i:=1+1,; 3
SEEK(fsphashtile, 1);
GET(fsphashfile)

UNTIL (EOF(fsphashfile)) OR X
(fsphahsfile*. number = fspcontract.number); R
IF fsphashfile*.number = fspcontract.number ,
THEN REPEAT (* error! same contract already in table *) _
prompt(errori, 3, choice); .
CASE choice OF 3
1 : BEGIN CLOSE(fsphashfile); EXIT(fspnew) END; 3
2 : BEGIN CLOSE(fsphashfile); fspinquery END; .
3 : BEGIN e
REPEAT A
write(chr(12), at(x,3), 'Contract number 3
(<ctrl-c> to quit): '), =
readIn(fspcontract. number);)
UNTIL (fspcontract.number <> ' ') OR EOF;]
done := false; :
IF EOF THEN BEGIN 5
CLOSE(fsphashfile);]
RESET(INPUT); ‘

EXIT(fspnew)

155

. - n N -~ T M AT T AT et . RS T N N
NG N N N N N N A N N N O N R D N N A O el R SN IPUASS "
‘s A ‘ A A \ : \

END
END;
END; (* case *)
UNTIL choice = 3
(* no error so put into the fspfile and fsphashfile *)
ELSE BEGIN

(* place the new purchase contract info into the fspfile;
place at the first open slot *)

RESET(fspfile, '*5: fspfile'); - 3

(* put the contract info into the first open slot *)

loc := -1;

REPEAT y
loc :=loc + 1; :
SEEK (fspfile, loc); g
GET(fspfile);

UNTIL (fspfile*.status = empty) OR (EOF(fspfile));

IF EOF(fspfile)

THEN BEGIN ;
write(chr(12), at(x,3), 'DOOMESDAY! No more space -

to add new contract');

write(at(x, 4), 'Must use new diskette.

Press <RETURN>');
readln; CLOSE(fspfile); EXIT(fspnew) B
END; T
fspfile*:= fspcontract;

SEEK(fspfile, loc);

PUT(fspfile); CLOSE(fspfile);

write(at(0,22), 'loc = ',loc);

(* tind open slot in fsphashfile *)

RESET(fsphashtile);
{:=-1; -
REPEAT N
i:=1+1,; a
SEEK(fsphashfile, i);
GET(fsphashfile)

UNTIL fsphashfile®. status = empty; f
(* put in the information *) N
WITH fsphashfile* DO ;
BEGIN
status := occupied;
number := fspcontract.number;
name = fspcontract.farmer.name;
Iink .= loc;)
commodity := fspcontract.commodity

7

156 -y

END;

END;

SEEK (fsphashtfile, i);
PUT(fsphashfile); CLOSE(fsphashfile)
END

UNTIL done

(* tspnew *)

157

- ..
YL -

(.

Yo - . B I A
g ° y s "~ - y “ . < - - - » -
PP IV PO PR PO OO T WY SN Sl Wl S0

e

1y AN NN s

WA

.
)

ufqﬁtatu!\v\1W‘W!\“'j|'o-v'u-'~|~t;|-|'|'|~o:ofﬂ"f VAN AU IR Y DV I TN O O O IR O O O O TR DS N Kﬁ!ﬂﬁﬂ-“-"'“"“‘"w

APPENDIX B
' THE dBASE III PLUS PROGRAMS

xxx program HANAOKA

R Original written in Apple Pascal
R Rewritten in dBASE 11l PLUS
XXX Author : To Chang

annx Date : June 1987

bt Instructor : Prof. Thomas C. Wu

R

y Clear all

! set talk off
" set bell off
) set dele on
\ set exact on

store .T. to badentry

do while badentry
Clear
@ 10,10 say ' Password : (or hit <CR> to exit...)'
@ 10,50

NN A

.
« o

set escape off
set exact on

set console off
accept to mpass
set console on

A
a.a A

-8

if mpass = ' '
set escape on
set exact off
Clear
return

endif

RV

doey

If mpass * 'HANAOKA'
@ 20,20 say 'Incorrect password ... (hit <CR> to retry)'
? chr(7)
wait '’
loop
endif
store .F. to badentry

BTN o)

CLOOCERY

158

»
ol
«

................

AN NS

o

Lo ST JJ
SISt SRy el

i)

s
2 A BB IIPN

Crat B 0t it 4 ™ 0al Bal Rt 0 8'a 4 hat 2 ' 8 O 4. At Al AP et at at val al Yal 2t P2l Vel 2@ "ol Tal %al ‘ol Vol Wb N B 0. 20 060 50" 0 8"

enddo

¥EARX MAIN MENU b
Clear

store ' ' to mchoice
@ 02,15 say '+++++++++++++++tt+++td bbbt b bttt bbb

@ 03,15 say '+ +'
@ 04,15 say '+ ABC COMPANY +'
@ 05,15 asy '+ +
@ 06,15 say '+++++bbbtbdbb bbb bbbt b+
@ 08,15 say ' 1. Sales’

@ 10,15 say ' 2. Purchase’

@ 12,15 say ' 3. Quit'

@ 18,15 say ' Choose one function —->(1,2,3)';

get mchoice pict 'x'

store .T. to mcontinue

do while mcontinue
do case
case mchoice
do sale
case mchoice = '2'
do purchase
otherwise
store .F. to mcontinue
Clear
endcase
enddo
close databases
quit
* <End of HANAOKA>

‘1!

nnnn

*Program SALE.PRG ----- called from HANAOKA
do while .T.

Clear
store ' ' to mchoice
@ 02,15 say '++++++ttttttttttttt bttt bttt

@ 93,15 say '+ +'
@ 04,15 say '+ ABC Sale Information +'
@ 05,15 say '+ +'
@ 06,15 say '+++++++++++++HE bbbt bbb bbb bbb R4
@ 08,15 say ' 1. New Sale Contract Entry’
@ 10,15 say ' 2. New Sale Shipment Entry'
@ 12,15 say ' 3. Sale Information Inquery'
@ 14,15 say ' 4. Quit'
@ 18,15 say ' Choose one function -->(4,2,3,4)";
get mchoice pict 'x’

read
do case

case mchoice = '1’

do newsale
case mchoice = '2'
do s_shipinfo
case mchoice = '3’
do s-inquery
otherwise
Clear
return
endcase
enddo
x <End of SALE>

160

PRRER

* Program NEWSALE.PRG -~--- called from SALE.PRG A
Clear .
f-

public mtotalship, mnofshipmnt, msnumber -
do while .T.)
store space(12) to msnumber, micnumber ::
store space(50) to mcommodity, mcustaddr ¢
store space(80) to mpricebase S,
store space(30) to missuebank, mdrawbank d
store space(18) to mmitino Y
store space(25) to mcname N
store space(13) to mcustphone N
store space(8) to mcontrdate, micexpdate, micshipdate X
store s to manswer =
store 0 to micbal, mwgt, mbal, micamount S
store 0 to munitprice, mtotaiship, mbalofship p
store 0 to mnofshipment N
store .T. to nogood, notok -

‘

do while notok
do while nogood 3
set confirm on -

L , set format to contract -
read .
if msnumber =’ ' x
set format to N

set confirm off N

store .F. to nogood N

return >

endif =
use b:s_contract index b:s_conindx 7
find 8msnumber =

if found() :-_'.

? chr(7) -

@ 04,50 say 'Duplicate key !' -

@ 24,05 say 'Replace? Discard? !nquery?(R,D,1)’; -

get manswer dict ‘X' -
read }

If upper(manswer) = 'R’ h

store .F. t0 nogood P

@ 24,05 say * ' =

endif -

if upper(manswer) = 'I' e

use K

close index 7

161 b

g A "/"-P"“'-“"J" _‘.,.'_\".;’:.__'\' '..':.-“a\ ‘J;\." N e T e e N TN T T T S \:‘\

g 3 (LB . W

e

do s_inquery
return
endif
if upper(manswer) = ‘D'
Clear all
endif
else
set format to
store .F. to nogood
endif
enddo
store ' ' to manswer
? chr(7)

@ 24,05 say 'Input 0K?(y/n)' get manswer pict 'x'

read

if upper(manswer) = 'Y"
store .F. to notok

endif

enddo

do tmship

use
close index

use b:s_contract index b:s_conindx

append blank

replace snumber
replace cname
replace contrdate
replace commodity
replace pricebase
replace icnumber
replace lcexpdate
replace lcshipdate
replace Icbal
replace icamount
replace totalship
replace balofship
replace issuebank
replace drawbank
replace mitino
replace nofshipmnt

with msnumber
with mcname
with mcontrdate
with mcommodity
with mpricebase
with micnumber
with micexpdate
with micshipdate
with micbal
with micamount
with mtotalship
with mbalofship
with missuebank
with mdrawbank
with mmitino
with mnofshipmnt

162

dad G 0 00 000 S8 4o

use
close index

select 3
use b:customer index b:custindx
find &mcname
if .NOT. found()
append blank

replace cname with mcname
replace address with mcustaddr
replace phoneno with mcustphone
endif
close databases
Clear all
enddo
* < End of NEWSALE.PRG >
163

AR NPT R S ALy '-f"-l‘"-l':-f‘\'(.'-'_'.' S

s

* Program S_INQUERY.PRG ----- called from HANAOKA or h
* or NEWSALE or S_SHIPINFO

do while .T.

Clear

Clear all

public mcontrno
store 0 to Ictr]
store ‘' ' to mchoice ;

store ' ' to mcontrno

store ' ' to mcompname 3
@ 02,15 say '+++++++++tHHbtt bbb bbb bbb bbb
@ 03,15 say '+ +'
@ 04,15 say '+ SALE INFORMATION INQUERY +!
@ 05,15 say '+ +'
@ 06,15 say '++++++++tttttb bbbt bbb bbb
@ 08,15 say ' 1. List Customer’

@ 10,15 say "’ 2. List All Contracts of One Customer'

@ 12,15 say ' 3. List One Contract Info.'

@ 14,15 say ' 4. Quit’

@ 22,15 say ' Choose one function --->(1,2,3,4)";

get mchoice pict 'x'

read ;
do case
case mchoice = '1'
Clear
@ 00,10 say ' +++++++ Customer List +++++++

use b:customer index b:custindx ;
do while .not. eof() '
store Ictr+1 to Ictr 1
if lctr >= 19]
store 0 to lctr p
wait 'More list on next page...' to memvar
Clear
endif -
@ lctr,02 say 'Name: ' N
@ lctr,08 say cname !
store Ictr+1 to lctr
@ Ictr,02 say 'Address: '
@ Ictr,11 say address
store Ictr+1 to lctr
@ Ictr,02 say '‘Phone number:
@ Ictr,16 say phoneno

164

G \'.‘-- AL RL Rl R '-'.":_‘-' \'.\. e RSO A i S A A ".’_‘n: '-'.\:F‘n;.\- ") 'h AW YR TRy '-;.'-‘_'1'\;_‘\.. \..‘.._'-"'.J' '_'..A'- .
* , Sl 5 3 o 3 0 i A A)

~
v

skip
enddo
wait
use
close index

case mchoice = '2'

Clear

@ 02,1 say 'Company Name = ' get mcompname,
pict 'XxXXXXXXXXXXX'

read

@ 04,15 say 'Contract with '

@ 04,30 say mcompname

use b:s.contract index b:s_conindx

disp all chame, commodity for cname = mcompname off

walit

use

close index

case mchoice = '3’

clear

@ 12,20 say 'Contract Number:' get mcontrno;
pict ‘XXXXXXXXXXXX'

read

@ 12,37 say mcontrno

select 2

use b:s_contra index b:s_conindx

find &mcontrno
if found()
use
close index
do salelist
@ 23,25 say "'
accept 'Need a printout?(y/n)' to manswer
if upper(manswer) = 'Y'
@ 23,00 say 'Turn on the printer,’
wait
set device to print
do salelist
set device to screen
endif
store ' ' to manswer
else
@ 20,20 say 'No such contract in the file!!’

.......

LR AR

-

s S

-~ & \I',’ ‘,)" ‘f ~/ ™

L CCHK LAY

PRGN

2

? ¢chr(7)
wait
endif
use
close index
case mchoice = '4'
return
endcase
enddo
* <End of S_INQUERY>

IXRAE AN AR AN MY ARXKA X!

* Program S_SHIPINFO

Clear

store ' ' to manswer

KRR AT RO N N 3.0 4.8 1.8 4 RO A UK RARN AN AN KT AN

called from SALE.PRG

do while .T.
store space(15) to minvoiceno
store space(25) to mname, morigin, mdest
store space(8) to metd, minvdate
store space(12) to msnumber, mcnumber
store 0 to mtotalbales, mtotalnet
store 0 to mnofcontner, mbales, mnet

set confirm on
set format to sshipment

read

if minvoiceno ="'

endif

set format to
set confirm off
use

close index
return

@ 24,20 say 'Input OK?(y/n)' get manswer pict 'x'

read

if upper(manswer) = 'Y"

invoiceno

do scompute

use b:contner index b:contnrdx
append blank
replace cnumber

with msnumber;
with minvoiceno

iag §

R - lll< b ,”{‘- .

£

P S S S T N PRV P

WA AR P

RN)
2

"

W oWy 2 ik
k >

replace bales with mbales,
net with mnet
store mtotaibales + mbaies to mtotalbales
store mtotainet + mnet to mtotalnet
store mnofcontner + 1 1o mnofcontner

store .F. to mcontinue

@ 24,15 say 'More container?(y/n)-->' get manswer pict 'x’
read

if upper{manswer) = 'Y'

store .T. to mcontinue

G @A Y Y S Y e,

LT

TR S R T W T R T U W T A I W R TR AR A A AR A RN R AN RN AN A AR R I AN KR MY U Y U Y VIV U DR UV IR OV calat o cad X

@ 24,15 say ' '

endif
do while mcontinue

set format to contfmt

read

if mcnumber = ' '

set format to
‘ set confirm off

use
close index
store .F. to mcontinue
else
- @ 24,15 say 'Input OK?(y/n)-->' get manswer;
pict ‘x'
if upper(manswer) = 'Y’
@ 24,15 say ' '
appnd blank
replace cnumber with mcnumber;
invoiceno with minvoiceno
do scompute
replace bales with mbales;
net with mnet
store mtotalbales + mbales to mtotalbales
store mtotalnet + mnet to mtotalnet
store mnofcontner + 1 to mnofcor.tner
@ 24,15 say ‘More containers?(y/n)-->' get;
manswer pict 'x’
read
@ 24,15 say ' '
if upper(manswer) = 'Y"
store .T. to mcontinue
else
store .F. to mcontinue
endif
endif
endif
enddo
use b:s.shipmt index b:sshipdx 2
append blank

168

- - e “u e - - REI TN PO TS TR TS LI - .. W RN N P B R '_-~ ‘-.'.- 'ip-'_-.'_- - M oo e =
‘_\. ST -_,\ _-(J.:‘. ‘.'-.._“;.. IR X o a-w.r et \vl‘._ ._ . NN T - A R A AR A A A

i)

replace invoiceno with minvoiceno;
name with mname;
origin with morigin,
dest with mdest
replace etd with metd;
invoicedat with minvdate
replace totalbales with mtotalbales;
totalnet with mtotalnet;
nofcontner with mnofcontner;
snumber with msnumbr
use
close index
endif
enddo
x <End of S_SHIPINFO>
* Program SALELIST.PRG ----- called from S_INQUERY.PRG
Clear

set relation to cname into customer

,10 say '===== Feed Stuff Sale Contract Information ====='
,02 say 'Sale Number:'

»19 say snumber

,02 say 'Contract Date:'

,19 say contrdate

,02 say 'Customer Name:'

,19 say cname

,02 say 'Customer Address:'

,19 say address

,02 say ‘Commodity:’

,19 say commuodity

,02 say 'Price Base:'

,19 say pricebase

,02 say ‘Time of Shipment : Months Quantity
,46 say ' Balance Unitprice'

P2PVDO0OPDDVOIDODPDOIOD
000000000000
OONNOCTCONABLAANDND P

store 9 to minctr
set relation to snumber into tmofship

do while .not. eof(tmofship) .and. snumber = mcontrno
@ minctr,32 say month
@ minctr, 39 say wgt .
@ minctr, 47 say bal
@ minctr,57 say unitprice

2EENE

Y '\‘\.‘I

A

¢

SO ATRIIRY

I" ,("'

AP IR R

..............
............
............

store minctr + 1 to minctr
skip
enddo

@ minctr+2,02 say 'Total Shipment:"

@ minctr+2,22 say totalship

@ minctr+3,02 say 'Balance of Shipment:'

@ minctr+3,22 say balofship

@ minctr+4,02 say 'L/C number:'

@ minctr+4,22 say lcnumber

@ minctr+5,02 say 'L/C expire date:' ;
@ minctr+5,22 say lcexpdate *
@ minctr+6,02 say 'L/c shipment date:"
@ minctr+6,22 say lcshipdate

@ minctr+7,02 say 'L/C amount:'

@ minctr+7,22 say lcamount

@ minctr+8,02 say 'L/C balance:’

@ minctr+8,22 say Icbal

@ minctr+9,02 say 'Issue Bank:'

@ minctr+9,22 say issuebank

@ minctr+10,02 say 'Draw Bank:'

@ minctr+10,22 say drawbank

@ minctr+11,02 say 'Miti number:’ o)
@ minctr+11,22 say mitino

@ minctr+12,02 say '* of shipment made:'

@ minctr+12,22 say nofshipment

return
* <End of SALELIST.PRG>

170

P T W ‘J "--'.‘l AR "-"h 'J..‘.l L} '.-{"..\ \a\’)\.-'-‘-._ “. > -

* Program SCOMPUTE.PRG ----- called from S_SHIPINFO.PRG f

public mnet h
public mrate

store O to mrate

select 2
use b:tmofship index b:tmshipdx
set relation to snumber into tmofship

do while .not. eof(tmofship) .and. snumber = msnumber
if month = substr(invoicedate, 4,5) 3
@ 12,15 say 'Rate = -
@ 12,20 say unitprice ;
@ 20,10 say 'Compute the price with the above rate?(y/n)’; "
get manswer pict 'x'
read s
if upper(manswer) = 'N' Z
Clear
@ 12,15 say 'Rate = ' get mrate pict '9999999999999.99’
else
store unitprice to mrate
endif

store totalnet/2000.0 to mshiintons -
store bal-mshintons to bal by

set relation to snumber into s_contra

store balofship—mshintons to balofship
store Icbal-mshintons*mrate to lcbal :
endif N
skip i
enddo

use

close index

return

* <End of SCOMPUTE. PRG>

* Program SALEPRT.PRG ----—-—- called from S_INQUERY.PRG

clear

store space(25) to mcname

select 2

use b:s_contract index b:s_conindx
find &émcontrno

@ 00,10 say '===== Feed Stuff Sale Contract Information

@ 02,02 say ‘Sale Number:'
& 02,19 say snumber
@ 03,02 say 'Contract Date:'
@ 03,19 say contrdate
@ 04,02 say 'Customer Name:'
@ 04,19 say cname
store cname to mcname
select 3
use b:customer index b:custindx
find &mcname
@ 05,02 say 'Customer Address:'
@ 05,19 say address
select 2
@ 06,02 say 'Commodity:’
@ 06,19 say commodity
@ 07,02 say 'Price Base:'
@ 07,19 say pricebase
@ 08,02 say 'Time of Shipment : Months
@ 08,46 say ' Balance Unitprice’
store 9 to minctr
select 4
use b:tmofship index b:tmshipdx
do while .not. eof()
if snumber = mcontrno
© minctr,32 say month
@ minctr,39 say wgt
@ minctr, 47 say bal
@ minctr,57 say unitprice
store minctr+1 to minctr
endif
skip
enddo
select 2
@ minctr+2,02 say 'Total shipment:'
@ minctr+2,22 say totalship
@ minctr+3,02 say 'Balance of ship:'

172

Quantity

@ minctr+3,22 say balofship

@ minctr+4,02 say 'L/C number:"

@ minctr+4,22 say lcnumber

@ minctr+5,02 say 'L/C expire date:’
@ minctr+5,22 say lcexpdate

@ minctr+6,02 say 'L/C shipment date:’
@ minctr+6,22 say lcshipdate

@ minctr+7,02 say ‘'L/C amount:'

@ minctr+7,22 say lcamount

@ minctr+8,02 say 'L/C balance:'

@ minctr+8,22 say Icbal

@ minctr+9,02 say ‘Issue Bank:'

@ minctr+9,22 say issuebank

@ minctr+10,02 say 'Draw Bank:'

@ minctr+10,22 say drawbank

@ minctr+11,02 say 'Miti number:’
@ minctr+11,22 say mitino

@ minctr+12,02 say '* of shipment made:'
@ minctr+12,22 say nofshipment
eject

return

* < End of SALEPRT.PRG >

.......
........

ot A Tt tat taS 0e fat Ga” fal a7 @it £ fat Rt g8 g bt e b g L Ya 8% 2% 8% 8's 2% 0% 2% 8% 8V 00 a2 102 2 % a0 a0, Fal tat tat Y
’ . . J .

* Program SALELIST.PRG -===——- called from S_INQUERY.PRG

clear
store space(25) to mcname
select 2
use b:s_contract index b:s.conindx
find &mcontrno
@ 01,10 say '===== Feed Stuff Sale Contract Information ====='
@ 02,02 say ‘Sale Number:'
@ 02,19 say snumber
@ 03,02 say 'Contract Date:'
@ 03,19 say contrdate
@ 04,02 say 'Customer Name:'
@ 04,19 say cname
store chame to mcname
select 3
use b:customer index b:custindx
find &mcname
@ 05,02 say '‘Customer Address:'
@ 05,19 say address
select 2
@ 06,02 say 'Commodity:'
@ 06,19 say commodity
@ 07,02 say 'Price Base:'
@ 07,19 say pricebase
@ 08,02 say 'Time of Shipment : Months Quantity '
@ 08,46 say ' Balance Unitprice’
store 9 to minctr
select 4
use p.tmofship index b:tmshipdx
do while .not. eof()
if snumber = mcontrno
@ minctr,32 say month
@ minctr,39 say wgt
@ minctr, 47 say bal
@ minctr,57 say unitprice
store minctr+1 to minctr
endif
skip
enddo
select 2
if mincir >= 12
wait 'More informations on next page...' to memvar

174

store 0 to minctr
Clear
endif

@ minctr+2,02 say 'Total shipment:'
@ minctr+2,22 say totalship

@ minctr+3,02 say 'Balance of ship:'
@ minctr+3,22 say balofship

@ minctr+4,02 say 'L/C number:'

@ minctr+4,22 say lcnumber

@ minctr+5,02 say 'L/C expire date:’
@ minctr+5,22 say lcexpdate

@ minctr+6,02 say 'L/C shipment date:'

@ minctr+6,22 say lcshipdate

@ minctr+7,02 say 'L/C amount:'
@ minctr+7,22 say lcamount

@ minctr+8,02 say 'L/C balance:*
@ minctr+8,22 say Icbal

@ minctr+9,02 say 'Issue Bank:'
@ minctr+9,22 say issuebank

@ minctr+10,02 say 'Draw Bank:'
@ minctr+10,22 say drawbank

@ minctr+11,02 say 'Miti number:'
@ minctr+11,22 say mitino

@ minctr+12,02 say '# of shipment made:'

@ minctr+12,22 say nofshipment
return

* < End of SALEPRT.PRG >

[PR R - e A A T T AT Y T
J‘ffl{'(. e e -l-.p < ot .‘».-, el

.....

HRARRT

Ly

v,

??\‘.{'-I"'.J‘

'
Y

[b T]
e %t Te e s
4 3

[T8]

* Program CONTRACT.FMT ---—-- called from NEWSALE.PRG
@ 01,05 say date()

@ 01,15 say 'NEW SALE CONTRACT DATA ENTRY SCREEN'
@0

@0

2 15 say ':::::::====:==================::=====
4,05 say 'Sale Number: ' get msnumber pict,
"XXXXXXXXXXXX'
@ 05,05 say 'Customer Name: ' get mcname pict;

XXXXXXXXXXXXXLXXXAXXXKXXXX'
@ 06,05 say 'Customer Address: ' get mcustaddr pict;
"XXXXXXXXXX XXX XXX XXX XXX XXX XXX XXX XXX XXX KX XXX X XXX XXKXX
@ 07,05 say 'Customer Phone*: ' get mphoneno pict;
"(XXX)XXX-XXXX'

@ 08,05 say 'Contract Date: ' get mcontrdate pict;
'XX/xx/xx'
@ 09,05 say 'Commodity: ' get mcommodity pict,
EXXXX XXX XXX XXX XX XXX XXX XXX XXX XXX XX XXX XXX XXX XXKXXKX
@ 10,05 say 'Price Base: ' get mpricebase pict;

XXXXXXXXX XXX XXX XX XXX XXX XXX XXX XXX XXX XXX XXX XX XXX XX XXX XXX XKXXX
xx'

@ 12,05 say 'L/C Number: ' get milcnumber pict;
'XXXXXXXXXXXX'
@ 13,05 say 'L/C Exp. Date: ' get mlcexpdate pict;
XX/XX/%XX'
@ 14,05 say 'L/C Ship Date: ' get micshipdate pict;
'xx/xx/xx'
@ 15,05 say 'L/C Bale: ' get micbal pict;
'9999999999999. 99’
@ 16,05 say 'L/C Amount: ' get mlcamount pict;
'9999999999999 .99’
@ 17,05 say 'Issue Bank: ' get missuebank pict,
'XXXXXXXXXXXXXXKXXXXXXXXXXXXXXXX'
@ 18,05 say 'Draw Bank: ‘ get mdrawbank pict;
'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
@ 19,05 say 'Miti Number: ' get mmitino pict;
'XXXXXXXXXXXXXXXKKX'
3 22,75 say '-—-Lzave all fields blank, and RETURN to exit--'

« < End 2f TONTRACT. MT >

176

WU WU L LI WL W W

Program SSHIPMENT.FMT —-==-- called from S_SHIPIN.PRG

02,01 say date()

02,15 say 'NEW SALE SHIPMENT DATA ENTRY SCREEN'

03,15 say ':::::::::::::::::::::::::::::::::::::

06,05 say '‘Sale Number: ' get msnumber pict;
XXXXXXXXXXXX'

@ 07,05 say 'Customer Name: ' get mhame pict;

"AXXXXXXXXXXXLIXXXXXXXKXXXXX

n

@
@
@
@

@ 08,05 say 'Origin: ' get morigin pict,
"XXXAXXXXXXXXXXXXXXAXXXXXX'

@ 09,05 say 'Destination: ' get mdest pict,
"XXXXXXXXXXXLXLXXXXXXXKX XXX

@ 10,05 say 'Estimate Date: ' get metd pict ‘xx/xx/xx'

@ 11,05 say ‘Invoice Date: ' get minvdate pict 'xx/xx/xx'

@ 12,05 say 's=========== Container Data Entry S==========

@ 13,05 say 'Invoice Number: ' get minvoiceno pict;
'XXXXXXXXXXXXXXX'

@ 14,05 say 'Container Number: ' get mcnumber pict,;
XXXXXXXXXXXX'

@ 15,05 say 'Bales: ' get mbales pict;
'9999999999999.99'

@ 16,05 say 'Net: ' get mnet pict;

'9999999999999. 99'
@ 23,05 say '--Leave all fields blank, and RETURN to exit--*
* < End of SSHIPMENT.FMT >

-———

oA N

PR EEARIG TN

R LA T N

R POy

* Program TOFSHIP . FMT ----- called from NEWSALE.PRG o
@ 01,05 say date() '
@ 01,15 say 'TIME OF SHIPMENT DATA ENTRY SCREEN' N
@ 02,15 say 's===z===z==========z====zz====zc=======z'
@ 04,05 say '‘Month: ' get mmonth pict ‘99’ N
@ 05,05 say 'Weight: ' get mwgt pict '9999999999999.99° by
@ 06,05 say 'Bales: ' get mbal pict '9999999999999.99" Py
@ 07,05 say 'Unit Price: ' get munitprice pict '9999999999999.99" Dy
@ 23,05 say '--Leave all fields blank, and RETURN to exit-- B
* < End of TOFSHIP.FMT > .
h
L.
o>
* Program CONTFMT.FMT ----- called from S_SHIPIN.PRG
@ 02,01 say date()
@ 02,15 say ' MORE CONTAINER DATA ENTRY SCREEN' -
@ 03,15 say ' Z====z=====Z=z======================' .‘
@ 06,05 say ‘Container Number: ' get mcnumber pict, :
'XXXXXXXXXXXX'
@ 07,05 say 'Invoice Number: ' get minvoiceno pict;
'XXXXXXXXXXXXXXX'
@ 08,05 say 'Bales: ' get mbales pict,
'9999999999999.99'
@ 09,05 say 'Net: ' get mnet pict,

'9999999999999. 99'
@ 23,05 say '--Leave all fields blank, and RETURN to exit--'
* < End of CONTFMT.FMT >

"}

v

»
,
N o
l-..
v

R A R AU AN RA AR AR AN AN AN AN AR N A AR M ANN R T IO AN IO T KN R ‘4, Nop fan” g e 00 Vol tag al

* Program PURCHASE ----- called from HANAOKA
set talk off

set bell off

set dele on

set exact on

do while .T.
Clear
store ' ' t0 mchoice
("] 02, 15 say sz=m=s=s=sssz==soozzo=xzsssz=====z====zz====='
@ 03,15 say '= -
@ 04,15 say '= HANAOKA Purchase Information ='
@ 05,15 say '= ='
@ 06,15 say 's==================o===s=s=sco==-osos=-osssoosoxs
@ 08,15 say ' 1. New Purchase Contract Entry’
@ 10,15 say ' 2. New Purchase Shipment Entry’
@ 12,15 say ' 3. Purchase Information Inquery'
@ 14,15 say ' 4. Quit'
@ 18,15 say ' Choose one function -->(1,2,3,4)' get mchoice;
pict 'x’'
read
do case
case mchoice = '1'
do newpurch

case mchoice = '2'
do p_shipin
case mchoice = 'Y’
do p_inquer
otherwise
return
endcase
enddo
* < End of PURCHASE >

179

oty .

AT AEOR)

LY

'S
1

S @ A

o

CN G FF I PSS LA,

,4.....v
. PR
NN

* Program NEWPURCH.PRG ----- called from PURCHASE.PRG
public mtotalship, mnofshipmnt, mpnumber

do while .T.
store space(12) to mpnumber
store space(25) to mfname
store space(50) to mcommodity, maddress
store space(13) to mphoneno
store space(8) to mcontrdate
store 0 to mtotalship
store 0 to mbalofship
store 0 to mnofshipmnt
store .T. to nogood, notok
store v to manswer

do while notok
do while nogood
set confirm on
set format to contra_p
read
if mpnumber = ' '
set format to
set confirm off
use
close index
return
endif
use b:p_contract index b:p_conindx
find &mpnumber
if found()
? chr(7)
@ 06,50 say 'Duplicate key!!"
@ 24,10 say 'Replace? Discard? Inquery?(R,D,1)-->";
get manswer pict 'x'
read
if upper(manswer) = 'R
store . F. to nogood
@ 24,10 say '
endif
if upper(manswer) = 'I*
use
close index
do p_inquer
return
endif

180

R TR AR IR I A N R R R N AR RN AN AR RPN IR LY TW O W U W WA TR T WA W P

else
store .F. to nogood
set format to
endif
enddo
store ' ' to manswer
@ 24,15 say 'Input OK?(Y/N)-->' get manswer pict 'x'
read
if upper(manswer) = 'Y’
store .F. to notok
else
store .T. to nogood
endif
enddo

do tmship

use

close index

use b:p_contract index b:p_conindx
append blank

replace pnumber with mpnumber
replace fname with mfname
replace contrdate with mcontrdate
replace commodity with mcommodity
replace totalship with mtotalship
replace balofship with mbalofship
replace nofshipment with mnofshipmnt
use

close index

use b:farmer index b:farmerdx
find &mfname
if .NOT. found()

append blank

replace fname with mfname
replace address with maddress
eplace phoneno with mphoneno

2ndif

use

close index

enddo

* < End of NEWPURCH.PRG >

............................

..............

h” e s TATR T T AT et et
e e I T T T P NP A . Lz
:\f. P fh-.' P, S G U PP R P P, L VPR PG PRTN, PP Y PP

b b 08§t 828 Vot attab S at e aln tagiay

.............
.............

RIS

T~

.«

ak ¥ g
©ab et tal el vatitat tal At talotalival s tab Tt Cat Tat Vab Vet tatitat had i i0 a8 tat talaNat tal Satital catotul tattan tatet gt el tah tatotgt b gt tat ngt et ana st te st

* Program P_SHIPIN.PRG -~--- called from PURCHASE.PRG
Clear

store .T. to nogood

public mshipno, mpnumber, mcost, mtotalbales, mtotalnet
public mtruckcost, mcompute, mnet, mcutpntwgt, mrateacut
public mratebcut, mcost, mbales

do while .T.
Clear
store space(12) to mshipno, mpnumber
store space(12) to mwgtticket, mcontrno
store space(8) to mmthday
store 0 10 mbales, mnoftruck
store 0 to mnet, mcost, mratebcut
store 0 to mrateacut
store 0 to mtotalbales, mshipintons
store 0 to mtotalnet, mcutpntwgt
store 0 to mpayment, mtruckcost
store P to mcompute, manswer
@ 12,30 say "'
accept Contract number:' to mcontrno
if mcontrno = ' '

return
endif
select 2

use b:p_contract index b:p_conindx
find &mcontrno
if found()
Clear
set confirm on
do while nogood
set format to pshipin
read
if mpshipno ="' '
set format to
set confirm off
return
endif
@ 23,15 say "
accept ' Input 0OK?(Y/N)-->' to manswer
if upper(manswer) = 'Y"
store ' ' 0 manswer
@ 24,15 say '
store .F. to nogood

182

k|
!
|
!

do pcompute
use b:truck index b:truckndx
append blank
replace pshipno
replace pnumber
replace mthday
store space(8)
replace wgtticketno
store space(12)
replace bales
store mtotalbales+mbales
store 0
replace net
store mtotalnet+mnet
store 0
replace cost
store mtruckcost+mcost
store 0
use
close index
@ 23,15 say "'
accept '
if upper(manswer) = 'Y’
do truckin
endif
endif
enddo
use
close index

store mtotalnet/2000.0 to mshipintons

use b.tofship index b:tshipndx
do while .NOT. eof()
if pnumber=mcontrno

if month = substr(mthday,1,2)

with mpshipno
with mcontrno
with mmthday
to mmthday
with mwgtticket
to mwgtticket

with mbales

to mtotalbales
to mbales
with mnet

to mtotalnet
to mnet
with mcost

to mtruckcost
to mcost

More trucks?(Y/N)-->' to manswer

store bal-mshipintons to bal
store mshipintons*unitprice to mpayment

endif
endif
skip
enddo

use

close index
use b:p_contract index b:p_conindx
do while .NOT. eof()

OV AV T

" B 4o 0ok 0o

'8.8°0.0°

¥
gl

SRR RAR

b e T T U S B IS 51

bt et B d e Bt et P Y 0 0 R Bt Bt fat £a7 a0 Bat (e 82" et dat Aat.lat AN P T T T TR TR TR T AR ST M Ty

if pnumber = mcontrno
store balofship-mshipintons to balofship
endif
skip
enddo
use
close index
use b:p_shipment index b:pshipndx
append blank

LA R R R A

¥ YR W

replace pshipno with mpshipno _
replace pnumber with mcontrno N
replace noftruck with mnoftruck .
replace totalbales with mtotalbales :
replace totalnet with mtotalnet -
replace payment with mpayment A
replace truckcost with mtruckcost <
use :
close index

else ‘.
Clear ;_
? chr(7) "
@ 12,25 say 'No such contract in the file !!’ "
@ 24,15
walit

endif

enddo

* < End of P_SHIPIN.PRG >

* Program TRUCKIN.PRG ----- called from P_SHIPIN.PRG
use

close index

use b:truck index b:truckndx

store .T. to mmore

‘ .

do while mmore b4,
Clear Ve
: store ' ' to manswer S
set confirm on =
set format to truckfmt 3
read %
if mwgtticket = ' by
set format to >

set confirm off ~

use X
close index)
return 00
endif £
@ 23,15 say " 5
accept Input OK?(Y/N)-->' to manswer i
if upper(manswer) = 'Y’ -
store ' ' to manswer
append blank X
replace pshipno with mpshipno T
replace pnumber with mpnumber Y
replace mthday with mmthday b
replace wgtticketno with mwgtticket R
repalce bales with mbales X
replace net with mnet "

do pcompute -
replace cost with mcost &
store mtotalbales+mbales to mtotalbales -
store 0 to mbales -
store mtotalnet+mnet to mtotalnet
store O to mnet 3
store mnoftruck+1 to mnoftruck]
store mtruckcosttmcost to mtruckcost §$

\"
@ 24,15 say ' t

@ 23,15 say ;
accept ' More trucks?(Y/N)-->' to manswer =

3
185 2

e e i e e A e an ¥ A e o X A NN M RPN e Mo e b e e - e

B g W W -
e d'a &'m 8% $° §°'8 A A¥s A et apoabo At el gy ¢a8 et ab Yol el Yal "ad al tal ish ! r .0 020 628 ¢ ORI YR
e s * gt et 1t 02t 22 fa® @t G2t Za' £2¢ €% Bat mat Rt mal 4 \J v

if upper(manswer) = 'N'
store .F. to mmore
@ 24,15 say ' '
endif
store ' ' to manswer
endif
enddo
use
close index
return
* < End of TRUCKIN.PRG >

186

---------- L o> P I R O R O U T P L R .t N _.__'.-‘_ . DIV O S T
;..-. -‘.‘ ;J_#,:J._,, 'r._-'n:"'-,,"'-_-f' ',;-,:.-_._f-__. N ,:.r,:.. AR J“..ﬂ -, RS, e T I S e G SN AR W \.r. O

B R R tal e Bh 2t $a® Ha? CR AR O PO .\..‘.. I o) x.~ 4 ¥l & Yaf, - » ! .‘-

* Program P_INQUER.PRG ----- called from HANAOKA.PRG or
x from NEWPURCH.PRG or
* from P_SHIPIN.PRG
public mcontrno
do while .T.
clear store ' ' to mchoice, manswer
store ' ' to mcommoname
store ' ' to mcontrno, mshipno
@ 02,15 say '==== === =======-SS===sS=ssssSssD=sos=sS=zz====
@ 03,15 say '= =
@ 04,15 say '= Purchase Information Inquery =
@ 05,15 say '= ='
-] 06,15 SaY '====c=oss===z=======S=SsSSSS====s=s===s=========='
@ 08,15 say ' 1. List all commuodities'
@ 10,15 say ' 2. List all contract of one farmer'
@ 12,15 say ' 3. List one purchase contract info.'
@ 14,15 say ' 4. Quit'
@ 20,15 say ' Choose one function -->(1,2,3,4)' get;
mchoice pict 'x’
read
do case
case mchoice = '1’
Clear
@ 02,15 say '==== List of all commodities ===='

use b:p_contract index b:p.conindx
display all commodity off
wait
use
close index
case mchoice = '2'
Clear
@ 02,15 say "Farmer's name:" get mcommoname pict;
'XXXXXXXXXXXXAXXXXKXXXX XXX
read
@ 03,1% say 'Contract with '
@ 03,32 say mcommoname
use b:p_contract index b:p_conindx

display all pnumber,commodity for fname=mcommoname,;
off

wait

use
close index

Pl gl o S

'.'\'i' F“‘{A’f"("' "

.4,‘{ “—1’?,"" .‘4 : s

MU AR A OO O OO A NI RO P O N O 7 W N PR, WO, W DI T

case mchoice = '3’
clear

@ 02,15 say 'Contract Number:' get mcontrno pict;

"XXXXXXXXXXXX'
read

if mcontrno = '
return
endif
use b:p_contract index b:p_conindx
find &mcontrno
if found()
use
close index
do purlist
@ 24,15 say 'Need a printout?(Y/N)-->' get manswer;
pict 'x'

read
if upper(manswer) = 'Y’
@ 24,15 say 'Turn on the printer,’
wait
set device to print
~ do purlist
set device to screen
endit
store ' ' t0 manswer
use
close index
Clear
@ 12,15 say 'See all shipments in sequence?(Y/N)’;

get manswer pict 'x’
read

if upper(manswer) = 'Y"
do pshlist
@ 24,15 say 'Need a printout?(Y/N)' get manswer;
pict ‘x’
read
ii upper(manswer) = 'Y'
set device to print
do pshlist
set device to screen
endif
endif
store ' ' t0 manswer
else

@ 15,20 say 'No such contract in the file!!’

188

S A A

R G Aty L T S T I M T T T A g 1T R T A L A L
(e a2t o N A N i N B ! L L o N o Nl fi ~ oy ey

YW VSRR AR W WA T W WK TUR A PR RE PR AN AR AN AL AN AN AN LN MR UV YNNI UCNUN UV UV LV Y L Aaglatate?) N [, %mta 4t el .t ',
/’,

A

5

.

? chr(7) N

endif N

use ~3

close index a2

case mchoice = '4' Ry
return

K

endcase ;_Z
enddo e
* < End of P_INQUER.PRG > Zu
0

&

:.r

.f

:r

&

a '."-".-‘ P

L

v',‘- U ‘-;".",,‘-."{f & v

<o
O
N AR

P
i '-".

n P oms e mmtamarn
St A AR N

* Program TMSHIP.PRG ----- called from NEWPURCH.PRG

Clear

store space(2) to mmonth

store 0 to mwgt, mbal, munitprice h
store ' to manswer Py
store .T. to mcontinue A

use b:tofship index b:tshipndx

do while mcontinue ;
set confirm on Ny
set format to tofship
read
if mmonth ="' '
set format to
use
close index
return
else
? chr(7)
@ 21,15 say "'
accept 'Input OK?(Y/N)-->' to manswer
if upper(manswer) = 'Y"
append blank

T s e,

B AR

Ty

replace month with mmonth h
store ' ' to mmonth
replace pnumber with mpnumber

replace wgt with mwgt

replace bal with mbal
store 0 to mbal B
replace unitprice with munitprice N
store O to munitprice "
store ' to manswer -3
store mtotalship+mwgt to mtotalship 'l'_
store 0 to mwgt s
store mnofshipmnt+1 to mnofshipmnt N
endif o
endif s
enddo .
* < End of TMSHIP.PRG > S

ror
s
.

‘ s
q {—l'$ ll "

5%

190

L]
K

* program PURLIST.PRG ~~--~ called from P_INQUER.PRG
clear

store space(25) to mfname
store ' ' to minctr
select 2

use b:p_contract index b:p_conindx
find &mcontrno
@ 01,02 say '=== Feed Stuff Purchase Contract Information ==='
@ 02,02 say 'Purchase number:'
@ 02,21 say pnumber
@ 03,02 say 'Contract date:’
@ 03,21 say contrdate
@ 04,02 say 'Farmer name:"’
@ 04,21 say fname
store fname to mfname
select 3
use b:farmer index b:farmerdx
find ¢mfname
@ 05,02 say 'Address:’
@ 05,21 say address
select 2
@ 06,02 say 'Commuodity:’
@ 06,21 say commodity
@ 07,02 say 'Time of shipment: Month Quantity Balance
Unitprice'
store 8 to minctr
select 4
use b:tofship index b:tshipndx
do while .not. eof()
if pnumber = mcontrno
@ munctr, 49 say unitprice
@ minctr, 35 say bal
@ minctr, 22 say wgt
@ minctr, 20 say month
store minctr+1 to minctr
endif
skip
enddo
select 2
@ minctr+2,02 say 'Total Shipment:'
@ minctr+2,21 say totalship
@ minctr+3,02 say 'Balance of shipment:'
@ minctr+3,21 say balofship
@ minctr+4,02 say '* of shipments made:'

[S A

P A AP

PR o 7

4

Sy

R

5 el YT, "

"
@ minctr+4,21 say nofshipment 5
eject ;:
use Y
close index .
return .
* < End of PURLIST.PRG > T

* Program PSHLIST.PRG --——- called from P_INQUER.PRG
Clear

store 0 to minctr
store space(12) to mshipno
select 2
use b:.p_shipment index b:pshipndx
select 3
use b:truck index b:truckndx
select 2 -
store .T. to notdone)
do while .not. eof() .and. notdone
if pnumber = mcontrno
@ 01,02 say 'Shipment No:'
@ 01,21 say pshipno
store .F. to notdone
endif
skip
enddo
store pshipno to mpshipno
@ 02,02 say 'Date Wgt tkt* Bales Netwgt Cost'
store 3 to minctr
select 3
do while .not. eof() _
if pnumber = mcontrno ~
@ minctr,01 say mthday
@ minctr,09 say wgtticketno
@ minctr,21 say bales
@ minctr, 40 say net
@ minctr,55 say cost
store minctr+1 to minctr
endif
skip
enddo

s Y,

§ :';'\- 5 e

NN B

{3

reoree
&Jl.s 4

. ".5‘}:.

<3
.
-
o
v

“r
iy
4
o
W
-
4‘\ v
g
N
v
i(

select 2

@ minctr+1,02 say 'Total Bales:'
@ minctr+1,21 say totlabales

@ minctr+2,02 say 'Total Net:'
@ minctr+2,21 say totalnet

@ minctr+3,02 say 'Payment:’
@ minctr+3,21 say payment

@ minctr+4,02 say 'Truck Cost:'
@ minctr+4,21 say truckcost
eject

use

close index

return

* < End of PSHLIST.PRG >

193

S AL A N N S AT AT AT R
3 hh%:‘ﬁ‘h.&_-\ \Jﬁ_.'\'J\..'\.‘x..' [V P DAL P P P - N . o

AD-R184 027 COMPARISON OF PASCAL AND THE DBASE 111 PLUS LANGUAGE IN 3/3
AN _INVENTORY HRNRBEHENT SY. STEH(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA T CHANG J!
UNCLASSIFIED 12/5 NL

NRXA NN l“ I"
'*‘.1 p‘ ‘Q'l .i ‘0<

}
ow
g

t") _y
1.0 u N
—— :If m

; L)

3
[1]

MICROAORY RECNIUTION TEST CHART

g gy~ " " " !.’ -, .IO -..A-

\] \ ..
alg\t"l. i;il ,'l,::%'o
o '9 “.c"ol.o .H

e

+

-;"‘ .

‘\-'.- ln,,

m

\-\.‘

:?\b&i.

'y
y,
* Program PCOMPUTE.PRG -=--- called from P_SHIPIN.PRG
if upper(mcompute) = 'S’ 5
if (mnet/2000.0) < mcutpntwgt :
store (mnet/2000.0)*mratebcut to mcost
else
store (mnet/2000.0)*mrateacut to mcost ‘
endif b
else
if mbales < mcutpntwgt 9
store mratebcut to mcost '
else b
store (mbales/mcutpntwgt)*mrateacut to mcost ;
endif
endif :
return ‘
* < End of PCOMPUTE.PRG >]
:
:
\
.
194 ‘]

N o O Ol " N 0" A5 A " L CAA s A AT e A AT AT e e e T T
RO N e o SR AR OB e AN IO N PN o LY ok o A X

P S D T R R T R S N N R WV TN W L WA S WA B T MU M W WA IR R U O S WP R0 IO)Y R0

program CONTRA_P.FMT -~--- called from NEWPURCH.PRG
2,01 say date()

=
@0
@ 02,15 say 'NEW PURCHASE CONTRACT DATA ENTRY SCREEN'
® 03,15 say 's======z==zz=zz=s=z===z=====z=z====z====s========'
@ 06,05 say '‘Purchase Number:' get mpnumber pict;
"XXXXXXXXXXXX
@ 07,05 say 'Farmer name: ' get mfname pict;
XXX XXXXXXXXXXXXXXXXXXXXX'
@ 08,05 say 'Farmer address: ' get maddress pict;

D006900006900000900099000000000000999090990090900060004

@ 09,05 say ‘'Farmer phone*: ' get mphoneno pict,
'(XXX)XXX-XXXX'

@ 10,05 say 'Contract date: ' get mcontrdate pict;
'xx/xx/%x'

@ 11,05 say 'Commodity: ' get mcommodity pict;

XXX XXX XXX XXX XX XXX XXX XXX XXX XXX XXX XK XXX XXX XXX XXX XX XX
@ 12,05 say 'Total shipment: ‘* get mtotalship pict;
'9999999999999.99'
@ 13,05 say 'Bales of shipment: ' get mbalofship pict;
‘9999999999999, 99"
@ 20,05 say '--Leave all fields blank, and <CR> to exit--'
* < End of CONTRA_P.FMT >

N oo n o

WA

* Program PSHIPIN.FMT --~-- called from P_SHIPIN.PRG
02,01 say date()
2,15 say 'NEW PURCHASE SHIPMENT DATA ENTRY SCREEN

]

@0

@ 03,

e 06 05 say ‘Shipment Number:' get mshipno pict 'XXXXXXXXXXXX'

@ 07,05 say ‘Cutting point wgt: ' get mcutpntwgt pict;

'9999999999999. 99°

@ 08,05 say 'Rate below cut point:' get mratebcut pict;
'9999999999999. 99'

@ 09,05 say 'Rate above cut point:' get mrateacut pict;
'9999999999999.99'

® 13,15 say ' NEW TRUCKS DATA ENTRY SCREEN’

@ 14,15 say '==:::::===========================:====='

@ 16,05 say 'Date: ' get mmthday pict ‘xx/xx/xx'

@ 17,05 say ‘Wgt Ticket *: ' get mwgtticket pict 'XXXXXXXXXXXX'

@ 18,05 say 'Bales: ' get mbales pict '9999999999999.99'

@ 19,05 say 'Net: ' get mnet pict '9999999999999.99'

@ 20,05 say 'Trucking rate computation by shorttons/bales(S/B)';
get mcompute pict 'x'

@ 23,05 say '--Leave all fields blank, and <CR> to exit--'

x

< End of PSHIPIN.FMT >

196

v, %
P VR IR

TR TR R T R N O R R O R R O o Ty by g0 % A% £°2'@%a 4% 8% ASs R'e " 0

o g

LY
* Program TRUCKFMT.FMT ---~-- called from P_SHIPIN.PRG :
@ 02,01 say date()
@ 02,15 say '’ MORE TRUCKS DATA ENTRY SCREEN' 4
@ 03, 15 Say """""" === ====== :----—-:—--—--::—----::' ::
@ 05,05 say ‘Date: ' get mmthday pict 'xx/xx/xx’' N,
@ 06,05 say 'Wgt Ticket *. ' get mwgtticket pict 'XXXXXXXXXXXX' N,
@ 07,05 say 'Bales: ' get mbales pict '99999999999%9.99"
@ 08,05 say 'Net: ' get mnet pict '9999999999999.99' :
@ 23,05 say '--Leave all fields blank, and <CR> to exit--'

< End of TRUCKFMT.FMT >

............

R G SO NG (Lt A A A A NN
AT N AR S e P A A R VA S A S A SRRSO

“"OOD09299H

N LI

Program TOFSHIP.FMT ----- called from NEWPURCH.PRG

01,05 say date()

01,15 say 'TIME OF SHIPMENT DATA ENTRY SCREEN'

02,15 say '=======s====z=========z===s==========='

04,05 say 'Month: ' get mmonth pict '99°

05,05 say 'Weight: ' get mwgt pict '9999999999999 . 99°
06,05 say ‘Bales: ' get mbal pict '9999999999999.99'
07,05 say 'Unit Price: ' get munitprice '9999999999999.99°
23,05 say '--Leave all fields blank, and <CR> to exit--'

< End of TOFSHIP.FMT >

0
.............

10.

11.

12.

13.

CaW TR ab 4ad Lk ka0 g gt b pf A at Tat tat ¢ o ad . ab g [T § 'pt gt A% Tad.-

LIST OF REFERENCES

Barston, David R., Interactive Programming Environment.
McGraw Hill, Inc., 1984.

Welderhold, Gio, Database Design, McGraw Hill, 1977.

Senn, James A,
Wadsworth Publishers, 1982.

Ullman, Jefferey D., Database Svystems, Computer Software
Engineering Series, 1982.

Luis Castro, Jay Hanson and Tom Retting., Advanced

Programmer's Guide, featuring dBasell and dBase IlI, Ashton
Tate, 1985.

Bharucha, Kerman D., dBase [I] PLUS - A Comprehensive
User's Manual, Tab Books Inc., 1986.

Jenkins, David., dBase III - Tips And Tricks, Hayden Book
Company, 1986.

MacLennan, Bruce J., Principles Of Programming Languages °
Mn._mmanm_and_lmmmgmmn Holt, Rinehart and
Winston, 1983.

Kotfman, Elliot B., Problem Solving And Structured
Programming In Pascal, Addison Wesley Publishing Company,
1985.

Apple Computer, Apple II Instant Pascal Language Reference
Manual, Addison Wesley Publishing Company Inc., 1985.

C. Wu, Thomas , [antroduction To Database Svstems, CS 4300
Course Notes, 1986.

C. Wu, Thomas , Advanced Database Systems, CS 4312 Course
Notes, 1987.

Fairley, Richard, Software Engineering Concepts, MacGraw Hill
Inc., 1985,

& Ny et T
3o

AP LA AL,
-

¥

FIASAINY

Y44t g |

-
~
Y
Y
L)
1)

14.

15.

16.

17.

18.

19.

20.

21.

Date, C.J., An_Introduction To Database Systems, Addison
Wesley Publishing Company, 1986.

Kroenke, David, Database Processing : Fundamentals, Design.
Implementation,

Inmon, William H., Effective Database Design, Prentice-Hall
Inc., 1981.

Glass, Robert L., Noiseux Ronald A., Software Maintenance
Guidebook, Prentice-Hall Inc., 1981.

Boehm et al., (Characteristics of Software Quality, TRW
Systems and Energy, Inc., North-Holland Publishing Company,
1978.

Computer Science & Technology, Performance Assurance and
Data Integrity Practices, U.S. Department of Commerce,
National Bureau of Standards, 1978.

Relue, Richard B., Comparison Of Microcomputer Based
Qa;anas_LMamggmgnL Masters Thesis, Naval Postgraduate
School, June, 1982.

Sivasankaran, T.R., IS 4183 Course Notes, 1987.

200

7oL 7y

PRALTS.

R TR

CEA AR

N XD RIE
. .

L

v v s ¥
] L]

o '.-\'.r L and -'

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Chief Of Naval Operations
Director, Information Systems (OP-945)
Navy Department

Washington, D.C. 20350-2000

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943- 5002

Computer Technology Curricular Office
Naval Postgraduate School

Code 37

Monterey, California 93943

Department Chairman
Computer Science Department
Code 52

Naval Postgraduate School
Monterey, California 93943

Prof. C. Thomas Wu, Code 52 WQ
Naval Postgraduate School
Monterey, California 93943

Library,

Chinese Naval Academy
Tsoa-ying District
Kaohsiung City

Taiwan, Republic of China

Major To Chang

No. 1-1, Lane 10, Kuo-Chan Rd.
Feng Shan City ’
Taiwan, Republic of China

201

No. Copies
2

L %G

S

T T L O R L L T R T U R NPT URT LIS U LA LW UMY LW LS LW MU LISULISE LASTAT S UK M YL A AP WSSOSO L AT NI

Yoo e =

9. Anne Liang 1
3981 Hamilton St. *4
San Diego, CA 92104

P o

Trrrrs

-
.

BN A

* . R e e ey
- -

\7 'b"'-. SOy

. -

202

Vb ed 18 g AR
AN M A

